

The Application of SWAT for Hydrological Modeling in the Semantan River Basin, Pahang, Malaysia

Anis Sakinah Sahabuddin¹, Ahmad Fikri Abdullah^{1,2}, Mohd Sofiyan Sulaiman³

 ¹International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 70150, Port Dickson, Negeri Sembilan, Malaysia.
²Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, Jalan Universiti 1, 43400 Serdang, Selangor, Malaysia.
³Faculty of Ocean Engineering Technology & Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu.

Content of the presentation

1. 2. 3. 4. 5. Introduction Methodology Results Conclusion References

Introduction

Background of Study

Natural Disaster

Floods, landslides, and draught have continuously affected and altered the natural hydrological cycle (Djebou & Singh, 2016). These disasters, disrupted the pattern of water flow, modified the recharge rate of groundwater, as well as influencing the availability of surface water.

Hydrological Cycle

A continuous process where water travels through the Earth's system in order to sustain ecosystems (Ostovar, 2024), climate patterns (Quevauviller, 2010), and freshwater supplies (Bowen et al., 2007).

Hydrological Modelling

SWAT

Can be done with empirical, conceptual, or physical-based models (Pandi et al., 2021). HEC-HMS and SWAT are some of the most prevalent physically-based models.

Developed by combining three existing models – CREAMS, GLEN, and, EPIC (Glavan & Pintar, 2015). SWAT can operate on several different time step, enabling comprehensive analysis of land use, management practices, and climate change impacts on water quantity and quality over long periods.

Study Area

Semantan River basin, Pahang, Malaysia

- A fundamental subbasin of the larger Pahang River basin.
- Experiences hot and humid climate throughout the year with an average temperature of 25°C to 27°C (Lim et al., 2020).
- Received heavy rainfall approximately 1600 mm/yr that may be exacerbated by the Northeast monsoon in November to March.
- Multiple type of land use within the basin agricultural land, evergreen forest, urban, wetland forest.

◊ ⟨⟨♥⟩ ◊ 5

Research Gap

- SWAT's underuse in Semantan Basin
- Bias towards larger watersheds in prior research
- Needs for tropical-specific validation

Objectives of Study

Main:

To evaluate the performance of SWAT2012 in predicting the streamflow of the Semantan River, Pahang, Malaysia

Specific:

- To calibrate and validate SWAT2012 using observed streamflow data from gauging stations in the Semantan River Basin
- To assess model sensitivity by identifying the key hydrological parameters

Methodology

Results

Calibration

Performance Rating	R ²	NSE	RSR	PBIAS
Before Calibration	0.37	-0.23	1.11	-18
After Calibration	0.80	0.79	0.46	4.1

Validation

Performance Rating	R ²	NSE	RSR	PBIAS
Before Validation	0.49	0.46	0.73	5.1
After Validation	0.83	0.82	0.42	2.7

Parameters Sensitivity

Parameter	Parameter Name in SWAT- CUP	t-stat	P-Value	Sensitivity Rank
Groundwater delay (days)	VGW_DELAY.gw	10.7671	0.0000	1
Groundwater "revap" coefficient	VGW_REVAP.gw	1.4309	0.1531	2
Baseflow alpha factor (days)	VALPHA_BF.gw	1.0512	0.2937	3
Manning's "n" value for the main channel	VCH_N2.rte	0.8879	0.3751	4
Initial SCS runoff curve number for moisture condition II	RCN2.mgt	0.8651	0.3874	5
Plant uptake compensation factor	VEPCO.hru	0.7925	0.4285	6
Threshold depth of water in the shallow aquifer required for return flow to occur (mm)	VGWQMN.gw	0.7717	0.4407	7
Effective hydraulic conductivity in main channel alluvium (mm/hr)	V_CH_K2.rte	0.6000	0.5488	8
Soil evaporation compensation factor	VESCO.hru	0.5458	0.5854	9
Surface runoff lag time	VSURLAG.bsn	0.4888	0.6252	10
Average slope of main channel along the channel length (m/m)	VCH_S2.rte	0.4271	0.6695	11
Available water capacity of the soil layer (mm.H2O/mm.Soil)	R_SOL_AWC().sol	0.1632	0.8704	12
The threshold water level in a shallow water aquifer for percolation to the deep aquifer to occur	VREVAPMN.gw	0.0096	0.9924	13

Conclusion

- Model performance for the model was strong.
 - \odot NSE for calibration = 0.79
 - \odot NSE for validation = 0.82
- The most sensitive parameters for the model are:
 - GW_Delay
 - ◎ GW_Revap
 - ◎ Alpha_BF
 - ◎ CH_N2

*

*

*

*

 The study provides a robust framework for future water resource management and environmental assessments in the region

Further recommendations

- Use higher resolution for input data
- Integrate more hydrological data into the model
- Expand the scope of study
 - Olimate change impacts
 - O LULC change scenarios

*

*

References

- Bowen, G. J., Cerling, T. E., & Ehleringer, J. R. (2007). Stable Isotopes and Human Water Resources: Signals of Change. Terrestrial Ecology, 1(283), Terr. Ecol. https://doi.org/https://doi.org/10.1016/S1936-7961(07)01018-4
- Djebou, D. C. S., & Singh, V. P. (2016). Impact of climate change on the hydrologic cycle and implications for society. Nvironment and Social Psychology, 1(1), 36–49. https://doi.org/https://doi.org/10.18063/ESP.2016.01.002
- Glavan, M., & Pintar, M. (2015). Threats of Catchment Modelling with Soil and Water Assessment Tool (SWAT) Model. Water Resources Management and Modeling, 39–64. https://doi.org/https://doi.org/10.5772/34539
- Lilly, A., Grieve, I. C., Jordan, C., Baggaley, N. J., Birnie, R. V., Futter, M. N., Higgins, A., Hough, R., Jones, M., Noland, A. J., Stutter, M. I., & Towers, W. (2009). Climate Change, Land Management and Erosion in the Organic and Organo-Mineral Soils in Scotland and Northern Ireland. In Scottish Natural Heritage Commissioned Report No. 325.
- Lim, K. Y., Zakaria, N. A., & Foo, K. Y. (2020). Water quality assessment of urban catchment after the large-scale flood event : The worst natural tragedy at Pahang River, Malaysia. Desalination and Water Treatment, 175, 32–42. https://doi.org/10.5004/dwt.2020.24790
- Ostovar, A. (2024). Freshwater Resources. In Elgar Encyclopedia of Climate Policy (pp. 95–99). Edward Elgar Publishing. https://doi.org/10.4337/9781802209204.ch18
- Pandi, D., Kothandaraman, S., & Kuppusamy, M. (2021). Hydrological Models: A Review. International Journal of Hydrology Science and Technology, 12(3). https://doi.org/10.1504/ijhst.2021.117540
- Quevauviller, P. (2010). Water Sustainability and Climate Change in the EU and Global Context Policy and Research Responses. In R. E. Hester & R. M. Harrison (Eds.), Sustainable Water (pp. 1–24). https://doi.org/https://doi.org/10.1039/9781849732253

Thank You