

Christian-Albrechts-Universität zu Kiel

# Modeling hydrologic extremes with SWAT+

Paul Wagner & Nicola Fohrer







Department of Hydrology and Water Resources Management

#### Motivation: extreme dry conditions





Photos: P. Wagner 2022





#### Motivation: extreme wet conditions



Flood event in Goslar
26 July 2017

#### 205 mm rainfall in 3 days



Source: https://www.goslarsche.de/lokales/goslar\_artikel,-hochwasser-2017-als-die-flut-nach-goslar-kam-\_arid,2587078.html



#### Study area

- Harz mountains, Germany
- Catchment of the Oker upstream of the gauge Schladen
- Area: 361.6 km<sup>2</sup>
- Elevation: 89 m 1141 m
- 55% forest, 28% agriculture, 8% urban





## Spatial input data





Soil map BÜK 200

DEM 1 m, upscaled to 5 m + Stream network NI Land use Corine (5 ha)

### Weather and river gauges

- 10 river gauges
- 6 rain and temperature gauges
- 2 humidity stations
- 1 solar radiation and wind speed gauge





Methods



Simulation period:

• 1 Jan. 2016 - 31 Dec. 2019

Calibration technique:

- Latin Hypercube Sampling to derive 200 parameter sets
- Best parameter sets selected:
  - Best Kling-Gupta efficiency
  - Best low flow model
  - Best high flow model



# Best high flow and low flow models



 Based on the RSR\* applied to the respective segment of the FDC

\*ratio of the root mean square error to the standard deviation of measured data





#### Headwater catchment

- Gauge Sennhütte
- Area: 6.1 km<sup>2</sup>
- Elevation: 359 m 763 m
- 96% Forest, 4% Shrubland
- Steep slopes





#### Overall model evaluation







#### Overall model evaluation







#### Overall model evaluation







### Evaluation of high flows: 2017







### Evaluation of high flows: 2017







#### Evaluation of low flows: 2018







#### Evaluation of low flows: 2018









- Similar performance of all ,best' models (diff. ≤0.06 in KGE and NSE)
- Extreme flood event 2017 not influenced by parameterization
- Uncertainty in the observation of the extreme flood peak
- Other peak flows better represented in high flow model
- Low flow model better than KGE model
- Preliminary results: small number of model runs





- Peak flows: Improve rainfall representation by spatial interpolation
- Low flows: Add a 2nd shallow groundwater layer
- More model runs:
  - more robust results
  - best model for high and low flows (?)
- Use remotely sensed ET or soil moisture to add plausibility



#### Thank you very much for your attention!





#### Parameter ranges

| par         | min  | max  |      |
|-------------|------|------|------|
| CN2         | -15  | 5    |      |
| SURLAG      | 0.4  | 1.4  |      |
| RCHRG_DP    |      | 0.03 | 0.17 |
| ESCO        | 0.05 | 1.0  |      |
| PERCO       | -20  | 5    |      |
| CN3         | -20  | 20   |      |
| EPCO        | 0.05 | 0.5  |      |
| ALPHA_BF    |      | 0.5  | 1.0  |
| SOL_AWC0.04 |      | 0.2  |      |
| LATQ_CO -20 |      | 20   |      |
| SNOMELT_TMP |      | -4   | 2    |



#### Weather and river gauges



# Schladen Vienenburg (Radau) Vienenburg (Ecker) Sennbutte Eckerkrug Okertal Harzburg Dreiherrenbrücke Altenau Gitterkopf



10 gauges