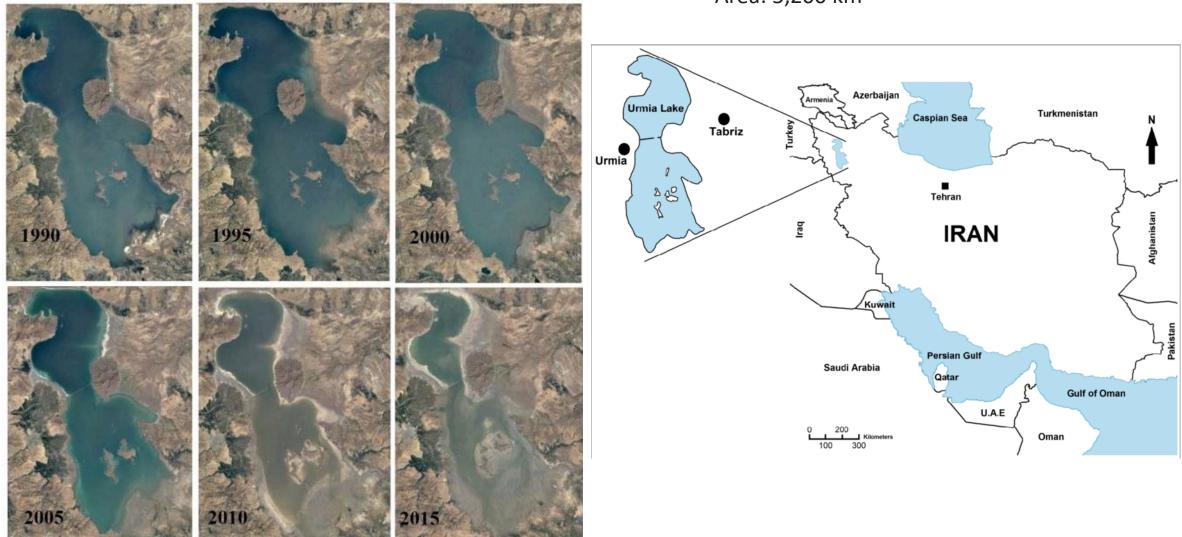
# Assessing the effectiveness of water-saving plans at the farm and basin level using agro-hydrological modeling and water accounting approaches

#### Majid Delavar; Leila Raeisi; Mohammad Reza Eini; Saeed Morid; Hamid Mohammadi; and Hamid Abbasi


Dept. of Water Engineering and Management, Tarbiat Modares University, Tehran, Iran

Dept. of Hydrology, Meteorology and Water Management, Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland.





## Urmia lake

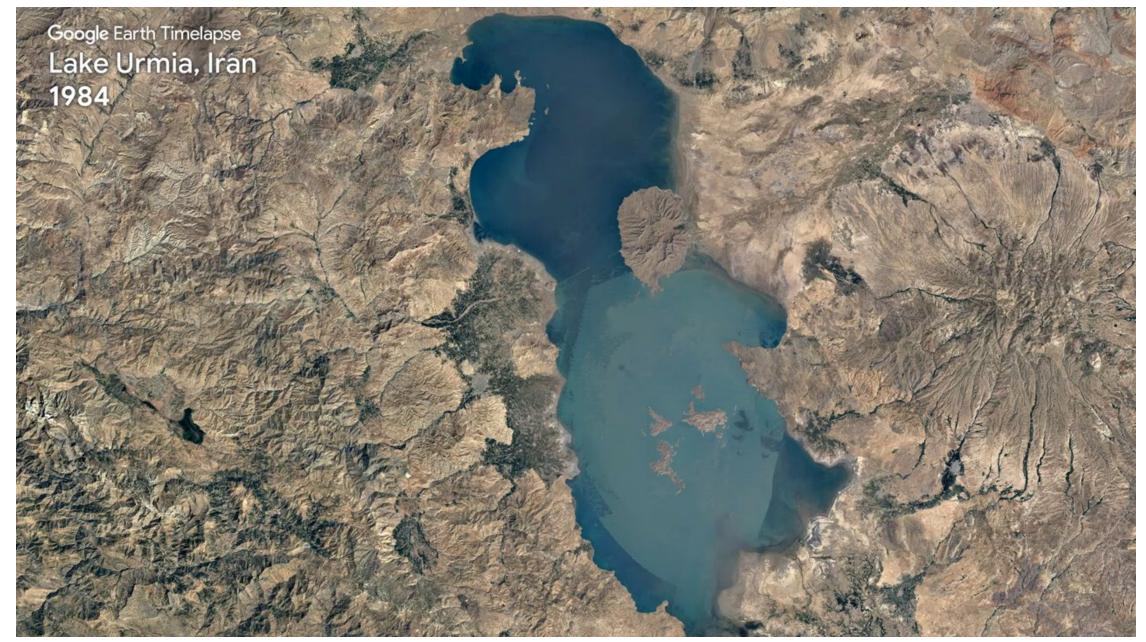


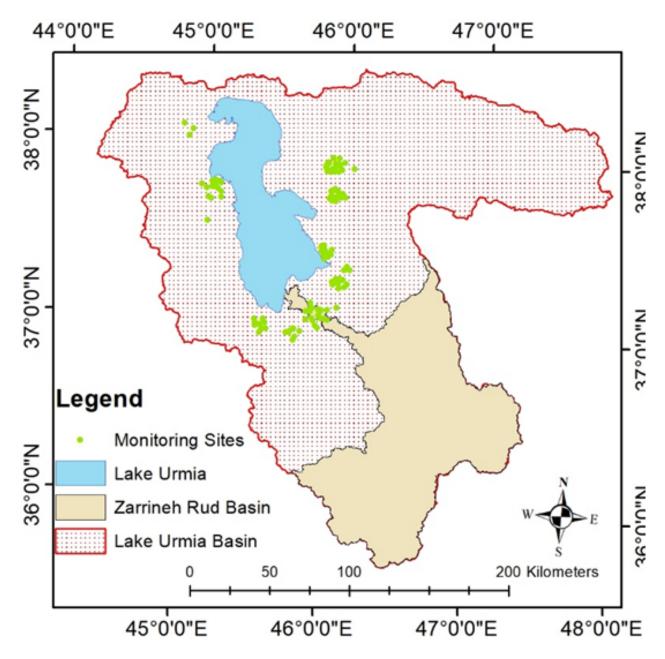
Area: 5,200 km<sup>2</sup>



### Lake Urmia, Van and Sevan



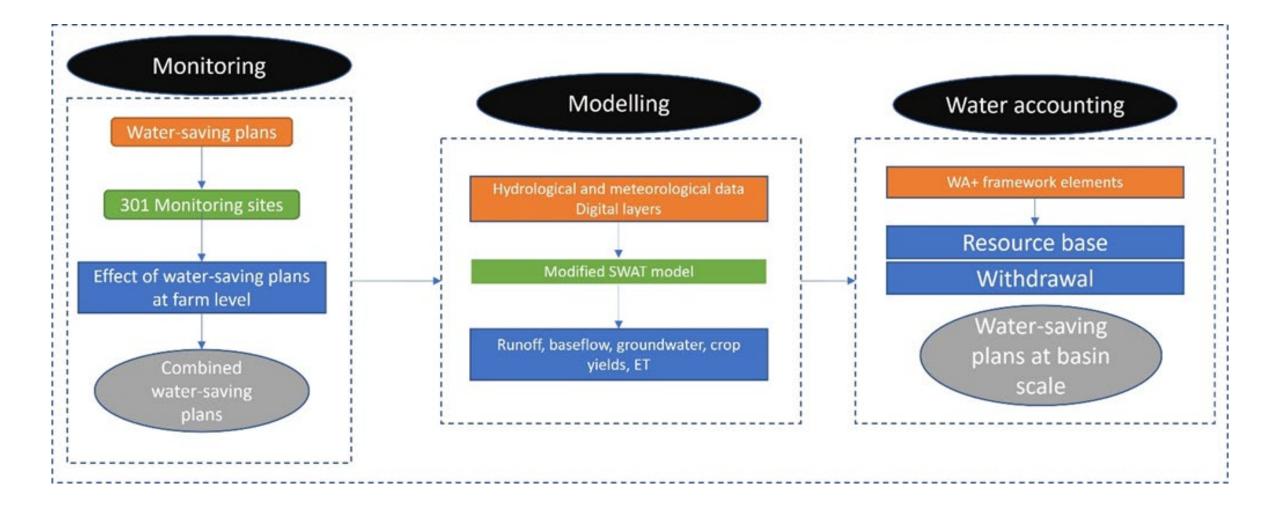

200 km distance Climate change?


1995: 32 Bm^3 (maximum) Now: 700 Mm^3

33 dams over 50 years

# Agriculture








# **Study Area: Zarrineh Rud Basin**

- The Zarrineh Rud Basin (ZRB), supplying more than 40% of total inflow water to Lake Urmia, plays a vital role in its restoration plans, and could have a significant effect on the conservation of Lake Urmia.
- The basin covers an area of approximately **12,000 Sq-km**.
- Mean annual precipitation reaches approximately
  400 mm, and the most extended channel has a length of 300 km.
- More than **75,000 ha** of irrigated farms in ZRB produce a wide range of agricultural products, including potato, sugar beet, apple, barley, apple, and alfalfa.

## Flowchart



## Monitoring Sites at the Farm Level

Over a period of **4 years 301 farms** were monitored in the scope of a national project entitled "Local community participation in the restoration of Lake Urmia through the establishment of sustainable agriculture and biodiversity conservation"

| Plan ID                                   | Plan ID Individual water-saving plan  |  |  |  |  |
|-------------------------------------------|---------------------------------------|--|--|--|--|
| Ι                                         | Changes in irrigation management ar   |  |  |  |  |
|                                           | developments in irrigation systems    |  |  |  |  |
| II                                        | Changes in fertilizer type and regime |  |  |  |  |
| III                                       | Changes in the type and method of     |  |  |  |  |
|                                           | cultivation                           |  |  |  |  |
| <b>IV</b> Farm size and shape adjustments |                                       |  |  |  |  |



The monitoring aimed at the assessment of the effect of watersaving plans on the farmers' economy, crop yield increment, water resources, and changes in the lake's water level.



The monitoring sites were designated in highly intense agricultural areas that use groundwater and surface water for irrigation.



Moreover, major crops of the Lake Urmia Basin are cultivated at these sites.



Corn, silage corn, barley, wheat, almond, apple, peach, potato, tomato, alfalfa, sugar beet, onion, and grape have the highest share in the cultivated areas of the sites

# Agro-hydrological model configuration



- ZRB was divided into **110 subbasins**
- By employing two land use maps (2005 and 2015) and the FAO soil database, **1908 HRUs** were created
- According to the available datasets, management schedules were implemented in the model
- Period 1987-2015 was used for modeling, employing six weather and discharge stations (1987-2007 calibration period and 2008-2015 validation period)
- Zarrineh Rud dam characteristics were added to the SWAT model.



Four categorized inventories of water balance information, namely resource base, evapotranspiration, withdrawal, and productivity.

# Water Accounting Plus (WA+) framework



The "Resource base" element delivers fundamental information on water balance components by considering the volume of precipitation, amount of ET, variations in water storage, outflow, and net withdrawals data.

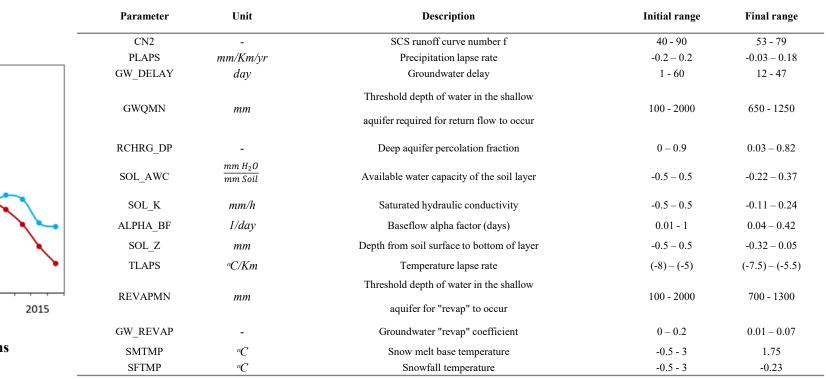


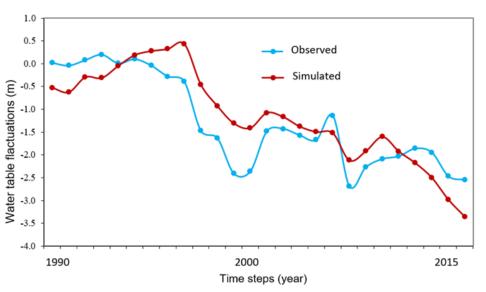
The "Evapotranspiration" element mainly focuses on evaporation and transpiration. It permits the assessment of beneficial and non-beneficial water usage, anthropogenic influences in water consumption, and consumed water by land use.



The "Withdrawal" element covers a brief of water removals (from groundwater and surface), analyses of (non-) recoverable flow, and amount of water recycling.




The "Productivity" element employs agricultural products, consumptive application, and water efficiency to identify biomass yields, food security, and water yield. "Evapotranspiration" and "Productivity" elements are not included in the current study.


# Results

#### Accuracy of the model in runoff and baseflow simulations

|    | Discharge station |                | Monthly runoff |                |      |                | flow |
|----|-------------------|----------------|----------------|----------------|------|----------------|------|
|    |                   | Calibration    |                | Validation     |      |                |      |
| ID | Station           | R <sup>2</sup> | NSE            | R <sup>2</sup> | NSE  | R <sup>2</sup> | NSE  |
| А  | Nezamabad         | 0.87           | 0.67           | 0.86           | 0.64 | -              | -    |
| В  | Choubloche        | 0.77           | 0.63           | 0.61           | 0.41 | -              | -    |
| С  | Zarrinehrud       | 0.9            | 0.83           | 0.85           | 0.73 | 0.86           | 0.75 |
| D  | Safakhane         | 0.85           | 0.72           | 0.74           | 0.7  | 0.72           | 0.71 |
| Е  | Poleanian         | 0.84           | 0.69           | 0.68           | 0.59 | 0.62           | 0.59 |
| F  | Senteh            | 0.83           | 0.71           | 0.82           | 0.65 | 0.74           | 0.69 |

#### Name, unit, initial range, and finale ranges of calibrated parameters in runoff simulation





# **Results – crop yields and ET**

| Accuracy of model in crop yield and ET simulations for different crops |                |       |        |          |          |       |         |       |
|------------------------------------------------------------------------|----------------|-------|--------|----------|----------|-------|---------|-------|
| Variable                                                               | Index          | Wheat | Barley | Potatoes | Tomatoes | Sugar | Alfalfa | Apple |
|                                                                        |                |       |        |          |          | beet  |         |       |
| ЕТ                                                                     | R <sup>2</sup> | 0.5   | 0.79   | 0.94     | 0.89     | 0.92  | 0.79    | 0.98  |
|                                                                        | NSE            | 0.67  | 0.47   | 0.94     | 0.34     | 0.92  | 0.47    | 0.98  |
| Crop yield                                                             | $\mathbb{R}^2$ | 0.66  | 0.83   | 0.62     | 0.48     | 0.6   | 0.83    | 0.92  |
|                                                                        | NSE            | 0.27  | 0.35   | 0.47     | 0.51     | 0.61  | 0.35    | 0.92  |
|                                                                        |                |       |        |          |          |       |         |       |

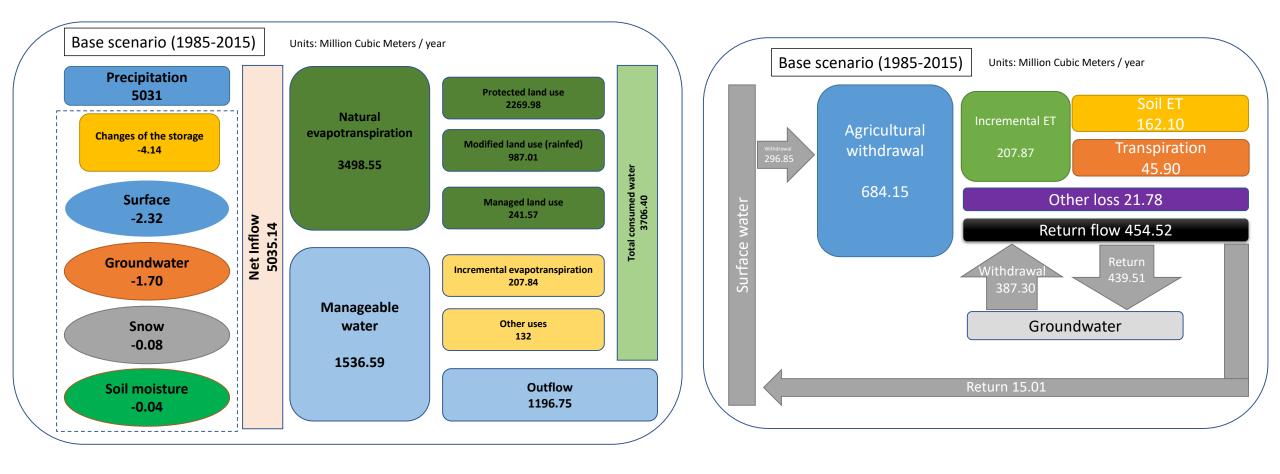
#### Average of crop yields (tons/ha) and ET (mm) for different crops

| Crop       | Crop yiel | d (tons/ha) | ЕТ    | (mm)     |
|------------|-----------|-------------|-------|----------|
| -          | Model     | Observed    | Model | Observed |
| Wheat      | 3.46      | 3.46        | 379   | 382      |
| Barley     | 2.6       | 2.69        | 312.9 | 303      |
| Potatoes   | 21.7      | 21.17       | 606.7 | 618      |
| Tomatoes   | 31.7      | 33.03       | 574.5 | 572      |
| Sugar beet | 42.65     | 44.6        | 678.7 | 696      |
| Alfalfa    | 8.5       | 8.5         | 762   | 773      |
| Apple      | 23.66     | 22.14       | 687.6 | 702      |

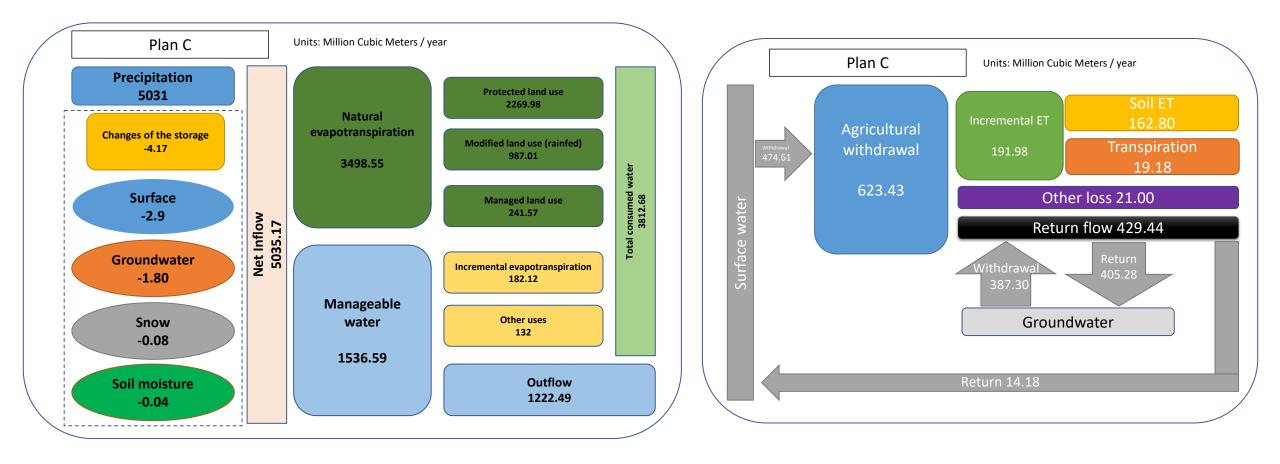
#### The List of selected parameters in crop yield and ET calibration process

| Parameter | Parameter description                                                         |      | Tomatoes | Apple | Alfalfa | Potatoes | Wheat | Barley |
|-----------|-------------------------------------------------------------------------------|------|----------|-------|---------|----------|-------|--------|
| BLAI      | Max leaf area index                                                           |      | 15       | 9.5   | 10      | 10       | 3.5   | 4      |
| DLAI      | Fraction of growing season when leaf area begins to decline                   |      | 1        | 0.99  | 0.99    | 1        | 0.8   | 0.5    |
| HVSTI     | Harvest index                                                                 | 2.4  | 1        | 1     | 0.67    | 1.25     | 0.4   | 0.6    |
| FRGRW1    | Fraction of the growing season corresponding to the 1st point on optimal leaf | 0.01 | 0.05     | 0.03  | 0.05    | 0.05     | 0.1   | 0.25   |
|           | area                                                                          |      |          |       |         |          |       |        |
| FRGRW2    | 2 Fraction of the growing season corresponding to the 2nd point on optimal    |      | 0.1      | 0.99  | 0.4     | 0.25     | 0.05  | 0.95   |
|           | leaf area                                                                     |      |          |       |         |          |       |        |
| LAIMX1    | Fraction of maximum leaf area index corresponding to the 1st point on         |      | 0.9      | 0.7   | 0.05    | 0.1      | 0.05  | 0.01   |
|           | optimal leaf area development curve                                           |      |          |       |         |          |       |        |
| LAIMX2    | Fraction of maximum leaf area index corresponding to the 2nd point on         | 0.99 | 0.4      | 0.95  | 0.95    | 0.95     | 0.95  | 0.85   |
|           | optimal leaf area development curve                                           |      |          |       |         |          |       |        |
| BIO_E     | Biomass/Energy Ratio                                                          |      | 100      | 40    | 36      | 110      | 55    | 90     |
| T_OPT     | Optimal temp for plant growth                                                 | 25   | 24       | 20    | 20      | 24       | 20    | 20     |
| T_BASE    | Min temp plant growth                                                         | 3    | 8        | 4     | 3       | 6        | 0     | 0      |
|           |                                                                               |      |          |       |         |          | 1     | 3      |

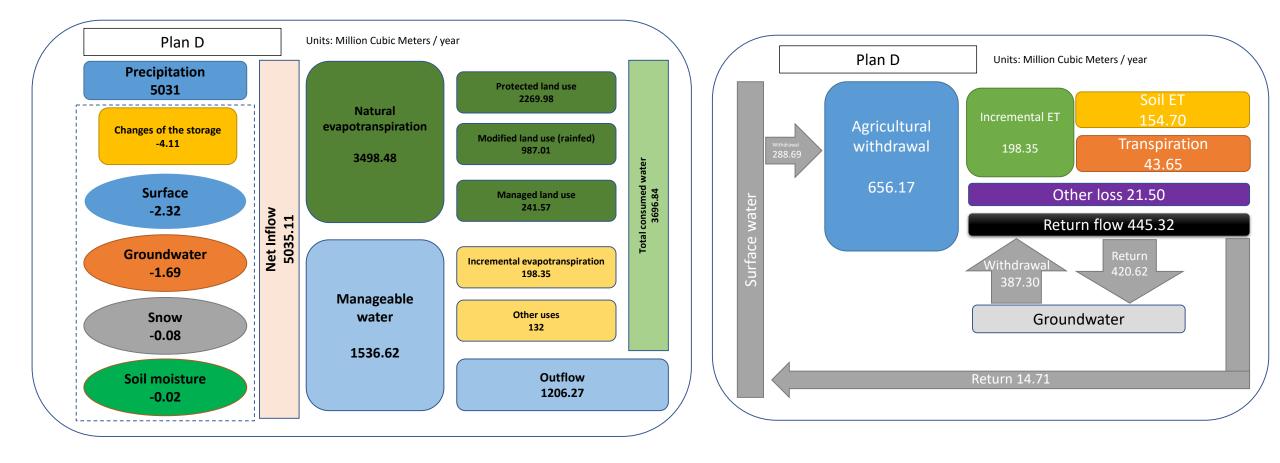
# **Results – Scenario simulations**


The changes in the strategy (such as irrigation systems) and resulting change in land and water productivity

| Plan ID* | Individual water-saving plan                                            | Water withdrawal<br>(m <sup>3</sup> /ha) | Water<br>usage<br>(m <sup>3</sup> /ha) | Crop<br>yield<br>(tons/ha) | Water<br>productivity<br>(kg/m <sup>3</sup> ) |
|----------|-------------------------------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------|-----------------------------------------------|
| Ι        | Changes in irrigation management and developments in irrigation systems | -6636                                    | -1874                                  | 4                          | 5                                             |
| II       | Changes in fertilizer type and regime                                   | 2410                                     | -2366                                  | 2                          | 0                                             |
| III      | Changes in the type and method of cultivation                           | -4469                                    | -1288                                  | 3                          | 2                                             |
| IV       | Farm size and shape adjustments                                         | -2928                                    | -1427                                  | 0                          | 1                                             |


### Effect of combined water-saving plans based on model outputs

|    |                         |                                               |                                                          | <u>A</u>                                                           |
|----|-------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|
| ID | Combined plan (based on | Saved water (10 <sup>3</sup> m <sup>3</sup> ) | Changes in lake inflow (10 <sup>3</sup> m <sup>3</sup> ) | Changes in groundwater resources (10 <sup>3</sup> m <sup>3</sup> ) |
|    | individual plans' ID)   |                                               |                                                          |                                                                    |
| А  | I, II, III, IV          | -343                                          | -230                                                     | -2                                                                 |
| В  | I, III, IV              | -6453                                         | -6473                                                    | -3                                                                 |
| С  | I, IV                   | 25860                                         | 25889                                                    | -247                                                               |
| D  | II, III, IV             | 9489                                          | 9526                                                     | 3                                                                  |
| Е  | Ι                       | -988                                          | -994                                                     | -2                                                                 |
| F  | II, IV                  | 3036                                          | 3160                                                     | 19                                                                 |
| G  | I, II, III              | -980                                          | -998                                                     | -2                                                                 |


#### Water Accounting Plus (WA+) framework Base scenario (status quo)



#### Water Accounting Plus (WA+) framework Scenario (Plan C)



#### Water Accounting Plus (WA+) framework Scenario (Plan D)



#### Conclusion

\* Changes in irrigation management and developments in irrigation systems had the greatest impact on reducing water removal and could reduce ET.

\* Changes in fertilizer type and regime did not significantly impact accessible water supplies.

\* Variations in ET showed a wide range of effects of water-saving plans, with an increase due to changes in fertilizer type and regime.

\* The most significant achievements in water-saving actions were increased crop yield and water productivity. Under the changes in irrigation management and developments in irrigation systems plan, crop yields increased by an average of four tons/ha and water productivity increased by around five kg/m3. \* Seven combined water-saving strategies were designed and applied over ZRB using the modified SWAT model. Three plans that increased runoff had better impacts on Lake Urmia and two of the best plans were selected for implementation into the model and WA+ assessment.



### Assessing the Effectiveness of Water-Saving Plans at the Farm and Basin Level Using Agrohydrological Modeling and Water-Accounting Approaches

Majid Delavar<sup>1</sup>; Leila Raeisi<sup>2</sup>; Mohammad Reza Eini<sup>3</sup>; Saeed Morid<sup>4</sup>; Hamid Mohammadi<sup>5</sup>; and Hamid Abbasi<sup>6</sup>

Journal of Irrigation and Drainage Engineering

Delavar, M., Raeisi, L., Eini, M. R., Morid, S., Mohammadi, H., & Abbasi, H. (2024). Assessing the Effectiveness of Water-Saving Plans at the Farm and Basin Level Using Agrohydrological Modeling and Water-Accounting Approaches. *Journal of Irrigation and Drainage Engineering*, *150*(4), 04024009.

## Thanks for your attention!

mohammad\_eini@sggw.edu.pl

