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MODELING IN A COMPLEXIFYING WORLD

 Our understanding of watershed systems has deepened: Increasingly complex, coupled watershed systems.

 Our necessary of watershed study have become more complicated：Driven by climate extremes and increasingly 
comprehensive human activities.

 Our management goals have expanded: from prediction to resilience, equity, sustainability.

 Our modeling framework must evolve to match this rising complexity.

→ We must move beyond static, simplified representations.



from assessment tools to reflective, physically realistic systems

 Structural Reconfiguration 
Represent real-world spatial 
heterogeneity 
E.g., dynamic imperviousness, 
lakeshore boundaries

Process Decomposition
Unpack hydrological fluxes into 
interpretable components
E.g., canopy evaporation vs. 
transpiration vs. soil evaporation

 Temporal Dynamism
Integrate long-term changes in 
vegetation, land use, and groundwater
E.g., LAI time series, interdecadal 
recharge response



RECONFIGURING URBAN WATERSHEDS 
the role of dynamic imperviousness

 Urbanization alters hydrological structure beyond land cover 

categories

 Static LULC maps miss internal heterogeneity of urban space

 Introduced time-varying Percent Imperviousness of Urban

surface (PIU) to represent evolving urban surface

Residential area in Osaka city

Residential area in Nara city

Low PIU High PIU



MODELING DYNAMIC URBAN IMPERVIOUSNESS

 Remote Sensing Mapping

 Landsat images (1976–2016)

 Visual interpretation of imperviousness

 PIU & PIC Parameterization

 PIU = total impervious surface / urban area

 PIC = directly connected impervious area / urban area

 SWAT Integration

 Assigned PIU/PIC by sub-catchment

 Modified CN2 to reflect composite urban runoff behavior



RESULTS: SURFACE–BASEFLOW PARTITIONING 
SHIFT WITH URBAN DENSITY
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 PIU increase from 0.33 → 0.50 led to catchment 
SFR ratio +0.04 and  BF ratio －0.08

 Baseflow decreased in high-PIU zones despite 
same land use class

 Spatial contrasts between “low-density urban” 
and “high-density urban” clearly reflected in 
hydrographs
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FOREST GROWTH ALTERS CANOPY DENSITY
beyond urban, ecosystems densify too

 Forest systems undergo density changes over time (e.g., aging, succession, management)

 Vegetation type itself matters—different forest types have inherently distinct canopy structures

 We used remote sensing LAI to quantify both temporal growth and spatial heterogeneity



SEPARATING EVAPOTRANSPIRATION
canopy evaporation, transpiration, and soil evaporation

 We modified SWAT to 

explicitly separate:

 Canopy evaporation (Ecan)

 Transpiration (T)

 Soil evaporation (Es)

• 1) Calculate the actual free water held in the canopy.
• if 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑐𝑐0 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 : 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑
• if 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑐𝑐0 < 𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 : 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 = 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑐𝑐0

• 2) Calculate the canopy evaporation Ecan.
• if 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 ≥ 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 : 𝐸𝐸𝑐𝑐𝑑𝑑𝑐𝑐 = 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 , 𝑐𝑐𝑐𝑐𝑐𝑐0′ = 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 , 𝐸𝐸𝐸𝐸′ = 0

• if 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 < 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 : 𝐸𝐸𝑐𝑐𝑑𝑑𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐0′ = 0, 𝐸𝐸𝐸𝐸′= 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐸𝐸𝑐𝑐𝑑𝑑𝑐𝑐

• 3) Estimate tree transpiration T, soil evaporation and 
understory vegetation evapotranspiration Es (𝐸𝐸𝐸𝐸′ > 0).
• if 𝐿𝐿𝐿𝐿𝐿𝐿 ≥ 3: 𝐸𝐸 = 𝐸𝐸𝐸𝐸′,𝐸𝐸𝑠𝑠 = 0

• if 𝐿𝐿𝐿𝐿𝐿𝐿 < 3: 𝐸𝐸 = 𝐸𝐸𝐸𝐸′ � 𝐿𝐿𝐿𝐿𝐿𝐿
3

,𝐸𝐸𝑠𝑠 = 𝐸𝐸𝐸𝐸′ − 𝐸𝐸



RESULTS: FOREST GROWTH ALTERS 
WATER PARTITIONING

 Forest ET increased significantly since the 1980s due to CO₂ fertilization & forest aging
 Transpiration dominated in mature managed forests; canopy evaporation dominant in dense unmanaged zones



MODELING LAKESHORE PLAINS UNDER DATA SCARCITY
reconstructing the invisible

 Why It Matters

 LGD (Lacustrine Groundwater Discharge):
Key to lake water balance and climate resilience

 Why It’s Challenging

 MODFLOW needs deep, site-specific data
– Aquifer structure
– Long-term GW observations
– Conductivity, boundaries

 These are often unavailable or not enough

 Our Strategy

 Use SWAT with RCPs

Luo et al., 2018



RESULTS: SPATIAL AND SEASONAL DYNAMICS OF 
LACUSTRINE GROUNDWATER DISCHARGE
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GROUNDWATER–SURFACE WATER RESILIENCE UNDER 
CLIMATE CHANGE SCENARIOS

 LGDratio: Proportion of lake inflow sustained by lacustrine groundwater discharge (LGD)
 SFVI: Surface Flow Variability Index – interannual variability of surface contribute
 GSFI: Groundwater Stability Function Index – resilience of LGD

T1: Temperature rises slightly; D1: T1 + more severe drought; D5: D1 + higher temperature; DW5: D5 + more flash flood



RECONSTRUCTING REALITY IN WATERSHED MODELING

Reveals not just that change is happening—but how, where, why and to what extent

Hydrological Modeling 
as a Lens on

Catchment Realities

Beyond prediction—used to explain changes

Integrates climate, land, and human drivers

Tailored for spatiotemporal complexity and realism

What We Challenged
① Static imperviousness 

assumptions miss urban evolution

② Forest growth and type ignored 

in long-term ET balance

③ Lakeshore groundwater 

dynamic modeling using SWAT

Where This Leads
① Climate-aware and land-

sensitive configuration

② Physically reflective model structure 

and flexible under data limitations

③ Supports resilient, mechanism-

aware water management
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