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MODELING IN A COMPLEXIFYING WORLD

» QOur understanding of watershed systems has deepened: Increasingly complex, coupled watershed systems.

= QOur necessary of watershed study have become more complicated . Driven by climate extremes and increasingly
comprehensive human activities.

= Our management goals have expanded: from prediction to resilience, equity, sustainability.
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®  Our modeling framework must evolve to match this rising complexity.

£ > We must move beyond static, simplified representations.

Static Watershed Human-Impacted Complex Socio-
Watershed Ecological System



RECONSTRUCTING THE WATERSHED
MODELING FRAMEWORK

from assessment tools to reflective, physically realistic systems
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@ Structural Reconfiguration
Represent real-world spatial
heterogeneity

E.g., dynamic imperviousness,
lakeshore boundaries

© Process Decomposition
Unpack hydrological fluxes into
interpretable components

E.g., canopy evaporation vs.
transpiration vs. soil evaporation

. Temporal Dynamism

Integrate long-term changes in
vegetation, land use, and groundwater
E.g., LAl time series, interdecadal
recharge response



RECONFIGURING URBAN WATERSHEDS

the role of dynamic imperviousness

® Urbanization alters hydrological structure beyond land cover
categories
@® Static LULC maps miss internal heterogeneity of urban space

® Introduced time-varying Percent Imperviousness of Urban

surface (PIU) to represent evolving urban surface

1FE TS 1400 E 18" HIE

SO0

b g=yra |

FHITH

MU H

5N

wiwe e wiveweawe ¢ | ow PIU Residential area in Osaka city



MODELING DYNAMIC URBAN IMPERVIOUSNESS

= Remote Sensing Mapping
= Landsat images (1976-2016)

= Visual interpretation of imperviousness 2008 Legend
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= PIU & PIC Parameterization
= PIU = total impervious surface / urban area

= PIC = directly connected impervious area / urban area

2000s

= SWAT Integration

= Assigned PIU/PIC by sub-catchment
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= Modified CN2 to reflect composite urban runoff behavior
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RESULTS: SURFACE-BASEFLOW PARTITIONING

SHIFT WITH URBAN DENSITY

» PIU increase from 0.33 = 0.50 led to catchment
SER ratio +0.04 and BF ratio —0.08 Catchment surface runo.ff ratio (S-URratio)
Catchment baseflow ratio (BFratio)
» Baseflow decreased in high-PIU zones despite

same land use class

Area expansion
only

SURratio + 0.02
BFratio -0.04

> Spatial contrasts between “low-density urban”

Actual urbanization processes

>

and “high-density urban” clearly reflected in
hydrographs

Present urban regions
Area expansion &
percent imperviousness
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FOREST GROWTH ALTERS CANOPY DENSITY

beyond urban, ecosystems densify too

= Forest systems undergo density changes over time (e.g., aging, succession, management)

= Vegetation type itself matters—different forest types have inherently distinct canopy structures

= We used remote sensing LAI to quantify both temporal growth and spatial heterogeneity
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SEPARATING EVAPOTRANSPIRATION

canopy evaporation, transpiration, and soil evaporation

» We modified SWAT to e 1) Calculate the actual free water held in the canopy.

s : e ifR + cany = can e = [eu
explicitly separate: £ 0 day t day

* if Ryqy + cang < canggy, :cang = Ryqy + cang
v Canopy evaporation (E_,,)
v Transpiration (7) U
* 2) Calculate the canopy evaporation E_,,.
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» 3) Estimate tree transpiration T, soil evaporation and
understory vegetation evapotranspiration E, (ET" > 0).

« fLAl >3: T=ET E,=0
+ ifLAI<3:T=ET' -2 E =ET'—T




RESULTS:

FOREST GROWTH ALTERS
WATER PARTITIONING

~ I Canopy Evaporation

GE Deciduous broadleaf vegetation
Y - g
«& Evergreen coniferous vegetation

f Evergreen broadleaf vegetation

» Forest ET increased significantly since the 1980s due to CO, fertilization & forest aging
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» Transpiration dominated in mature managed forests; canopy evaporation dominant in dense unmanaged zones



MODELING LAKESHORE PLAINS UNDER DATA SCARCITY

reconstructing the invisible
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€ Why It Matters S i -

> LGD (Lacustrine Groundwater Discharge):
Key to lake water balance and climate resilience

€ Why It's Challenging

O MODFLOW needs deep, site-specific data
— Aquifer structure N
- Long-term GW observations A
— Conductivity, boundaries

O These are often unavailable or not enough

& Our Strategy
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Groundwater balance (mm)

Water discharge (million m®)
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—a— Groundwater recharge into aquifer (both shallow and deep)
—e— Groundwater recharge into deep aquifer Precipitation
—v— Shallow groundwater discharge into river channel

Deep groundwater outflow from the catchment
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= LGDratio: Proportion of lake inflow sustained by lacustrine groundwater discharge (LGD)

= SFVI: Surface Flow Variability Index — interannual variability of surface contribute

= GSFI: Groundwater Stability Function Index — resilience of LGD
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Surface Flow Variability Index (SFVI)

System Resilience Quadrant: Climate Scenarios
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T1: Temperature rises slightly; D1: T1 + more severe drought; D5: D1 + higher temperature; DWS5: D5 + more flash flood



RECONSTRUCTING REALITY IN WATERSHED MODELING

What We Challenged

(D Static imperviousness

Where This Leads

(D Climate-aware and land-

assumptions miss urban evolution sensitive configuration

@ Forest growth and type ignored ) | Hydrological Modeling | @ Physically reflective model structure

asalenson
Catchment Realities

in long-term ET balance and flexible under data limitations

® Lakeshore groundwater @ Supports resilient, mechanism-

dynamic modeling using SWAT aware water management

Beyond predictioh—Uée.d'to explain changes

HEE

Integrates climate, land, and human drivers

: Tailored for spatiotemporal complexity and realism

Reveals not just that change is happening—but how, where, why and to what extent
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