

Universität für Bodenkultur Wien University of Natural Resources and Applied Life Sciences, Vienna

Der Wissenschaftsfonds.

Linking an ABM to SWAT to determine the impacts of future changes to surface water quality

B. Mehdi-Schulz¹, E. Lima¹, C. Egger², V. Gaube²

¹Institute of Hydrology and Water Management, BOKU ²Institute of Social Ecology, BOKU

Soil & WaterSession B4: Environmental ApplicationsAssessment ToolJune 28, 2023 Conference in Aarhus, Denmark

Introduction

- Field management practices are imperative to simulate the changes to soil water and nitrogen transport
 - Quantity of N losses
 - Timing of N losses
 - Spatial analysis of N losses
- Farmers are the key decision makers
- Simulating agricultural land management requires knowledge of decisions related to the crop types, fertillzation type and amount, seeding/harvesting dates, and annual changes in crop rotations

Objectives

- 1. Develop methodology to implement farmers decision regarding the spatial distribution of annual crops including their management practices in a large watershed.
 - Input into a hydrological model
- 2. Quantify the simulated variables related to the water balance, plant growth and nitrogen losses
 - Future agricultural land use & future climate simulations

Outcome: Determine future land use and management practices that achieve sustainable farming practices (lowest N losses) under changing conditions.

Framework

- A modelling framework that bridges the social and natural sciences
 - An ABM called SECLAND was non-dynamically coupled to the eco-hydrological model SWAT
 - Determine sustainable cropping practices that concurrently maintain or increase yields and reduce N in the environment

Area: 6106 km² Elevation: 1750 to 254 m.a.s.l. Avg. precipitation: 1412 mm Avg. temperture: -5 to +18°C

Land cover classes

Legend code: CORN: corn; FESI: pasture intensive; CANP: winter oilseed; CLVR: fieldforage FESC: pasture extensivet; FRST: forest; GRAP: vineyard; WWHT: cereals; ORCD: orchards; SGBT: root crops; SOYB: soybean; URML: urban areas; WATR: water; WETL: wetlands

Coordinate System: MGI Austria Lambert Projection: Lambert Conformal Conic Datum: MGI

0		7		14		21 km	۱		
1 cm = 7 km									

Methodology: hydrological model SWAT

- ArcSWAT 2012 version 2012.10_2.19, rev. 627
- Catchment divided into sub-basins and into HRUs
- Smallest unit is based on HRU
- Spatial representation of land use
- Simulation time step: daily
- Simulation period: 30 years

Calibrated variables at multiple gauges simultaneously:

Water balance components
Nitrogen concentrations in stream
Crop yields

SWAT model performance for discharge and nitrate

8

7

0.45

0.55

-16

-22

Crop yields simulated with SWAT

	Avg. yield (Mg/ha)	SGBT	CORN	WWHT	CLVR	CANP
Reference	LUO	13	8	5	7	3
	measured	50-60	8-11	4-6	7-8	3

Input and management data per HRU

INPUT DATA:

- Daily climate (precipitation, min. & max. temperature, wind, solar radiation)
- Digital elevation map
- Soil map
- Land use map (incl. crop types)
- Agricultural management practices (seeding date, ploughing type and dates, fertilizer application date and amount, harvest date).

CALIBRATION DATA:

- Daily discharge rates
- In-stream nutrient
- concentrations
- Yields of crops

Methodology: Future land use scenarios SECLAND

SECLAND is used to evaluate the impacts of changing socio-economic (prices, subsidies) and climate (extreme events) conditions on farmers' decision-making

- The farm agents (3059) seek well-being: a satisfying balance between income and workload.
- Their farming type and farming style influences their management decisions to improve or maintain their satisfaction.
- Management decisions affect land-use intensity, cultivated crop types, land abandonment, afforestation

Methodology: Future land use scenarios SECLAND

Scenarios of land use change:

Business-as-usual (LU1): the continuation of current development trajectories with constant subsidies and moderate impacts of climate change.

Sustainabilty (LU2): a considerable increase in farm subsidies are used as a steering mechanism to achieve sustainability goals. This describes high societal market intervention to achieve climate goals and thus, low climate change impacts.

Rapid Growth (LU3): the development of a society that forgoes controlling intervention and abolishes all subsidies by 2050 to focus on free market competition, which is associated with a stronger climate change impacts

Egger et al. (2022) Using the SECLAND model to project future land-use until 2050 under climate and socioeconomic change in the LTSER region Eisenwurzen (Austria). Ecological Economics, 201, 107559

Methodology: Future land use scenarios Land use maps

- SECLAND output is annual spatially distributed field level data
 - Depicts spatial distribution of crops
 - Based on farmer decisions in the region

Methodology: Future land use scenarios Land use maps

- SWAT land use change takes place at the HRU level
- > The interface between SECLAND and SWAT is the annually, spatially-explicit land-use map

Future crop management in LU1 – LU3

- In the future land use scenarios, *ÖPUL* (Austrian agro-environmental program) 2023 regulations were respected
- Summer crops that are normally seeded in April were planted 7-10 days earlier
- SWATfarmR (Schürz 2022) used for management practices

	SWAT					Mineral	Organic	
Crop type code		Plant Date		Harvest Date		Ν	Ν	Total N
		from	to	from	to			kg/ha
Grain & silage corn	CORN	14 Apr	3-May	8- Sep	5-Oct	160		160
Legumes	SOYB	10-Apr	10-May	20-Jul	15-Aug	60		60
Winter grains	WWHT	01-Oct	29-Oct	20-Jul	10-Aug	145	5	150
Tuber crops	SGBT	20-Mar	05-Apr	05-Oct	25-Oct	130		130
Winter rapeseed	CANP	27 July	10-Sep	20-Jul	10-Aug	150	10	160
Vineyards	GRAP			10-Sep	30-Sep	13	5	17
Orchards	ORCH			20-Aug	15-Sep	69	4	73
Pasture (BROM)	FESI					17	133	151
	FESC					90	90	180

Results comparing

LU3 SWAT + SECLAND Period 2015-2050

Results NO₃⁻-N loads per HRU for each crop

In LU3, CLVR and SGBT > +2.5 kg /ha

Total N

kg/ha

160

130

60

160

150

151

180

0

In LU3, CORN and CANP > -2 kg /ha

LU3 annual crops in all HRUs with tuber crops (SGBT) initially

LU3 annual crops in all HRUs with maize (CORN) initially

Total NO₃⁻-N losses from lateral flow: land use and climate change

Highest loads where pasture (BROM, CLVR, FESC) were rotated instead of monoculture

Conclusions

- The ABM generated land use scenarios that were successfully integrated into the HRUs and implemented in SWAT.
- Able to identify HRUs that are sensitive to the rotation and implementation of future management practices
- The spatial hotspots of future simulated nitrogen pathways were identified in SWAT.
- Including rotations in SWAT results will reduce N losses to environment, if the crop replacing the main crop has less N fertilizer application, and if pasture is not in a rotation (replacing organic N with mineral N).

Dynamically coupling the ABM to SWAT would optimize the streamlining of the climate change scenarios into the land use scenarios.

Bano Mehdi-Schulz

University of Natural Resources & Life Sciences, Vienna (BOKU)

Institute of Hydrology and Water Management (HyWa)

E-Mail: <u>bano.mehdi@boku.ac.at</u>

Institute of Social Ecology

Der Wissenschaftsfonds.