Evaluating the hydrological performance of three global digital soil maps using SWAT+

International Soil and Water Assessment Tool (SWAT) Conference 26-30 June 2023

Aarhus University, Department of Ecoscience, Denmark.

Gerardo Castellanos-Osorio, Adrián López-Ballesteros, Anders Nielsen, Dennis Trolle, Javier Senent-Aparicio.

> **PhD student in Computer Technology and Environmental Engineering.** Catholic University of Murcia (Spain).

UNIVERSIDAD CATÓLICA DE MURCIA

OUTLINE

INTRODUCTION

- \circ Scientifical context
 - DSOLMap Flowchart
 - Objectives

METHODOLOGY

- Watershed description
- o SWAT+ Model
 - Data collection and Model Set-up
 - Sensitivity analysis and Calibration method

> RESULTS

INTRODUCTION

- Hydrological models are essential for understanding watershed dynamics and the impact of human activities on water resources.
- Soil data, which plays a crucial role in the hydrological cycle, is a necessary model input and global digital soil maps usually have coarse spatial resolutions, adding considerable uncertainty to hydrological models despite calibration efforts.
- \checkmark A new digital soil maps with a finer resolution can help decision-makers address global challenges

related to water resources and environmental issues through hydrological modelling.

Scientifical Context. DSOLMap flowchart

Scientifical Context. Objectives

- Hydrological modelling of the Anduña river basin based on three different soil scenarios (Digital Soil Open Land Map, Digital Soil World Map, and Harmonized World Soil Database) using SWAT+ model.
- ✓ Analyse the sensitivity of the parameters, calibrate and validate the three soil scenarios, on a monthly and daily scale, from a multi-objective calibration using SWATplus-CUP software.

RESULTS

CONCLUSIONS

METHODOLOGY

INTRODUCTION

METHODOLOGY

Watershed description

- The Anduña river watershed is an area of high natural value, which allows the comparison of the different soil maps without significant added uncertainties.
- The Pyrenees region is also one of the main sources of water resources for the Ebro River watershed, the largest Mediterranean basin in Spain (85,362 Km²).

SWAT+ Model. Data collection

9

Input	Spatial Resolution	Source		
Weather data	5 km x 5 km	Spanish National Meteorological Agency (AEMET)		
DEM	25 m x 25 m	National Geographic Institute of Spain (IGN)		
Land uses	100 m x 100 m	CORINE Land Cover 2018 (CLC)		

Observed streamflow data on monthly and daily scale were extracted from CEDEX gauging station no. 9259 located at Izalzu for 1992 – 2018 period.

RESULTS

METHODOLOGY

INTRODUCTION

≈ 80%

Forests

SWAT+ Model. Data collection

SOIL PROPERTIES						
Spatial Resolution Data						
5 km x 5 km	Digital Soil World Map (DSWM)					
1 km x 1 km	Harmonized World Soil Database (HWSD)					
250 m x 250 m	Digital Soil Open Land Map (DSOLMap)					

A higher number of soil map units (SMUs) leads to a higher number of HRUs in the watershed, causing the computational requirements to increase.

METHODOLOGY

INTRODUCTION

(Busico et al., 2020)

RESULTS

CONCLUSIONS

SWAT+ Model. Model Set-up

11

Climate data + Spatial data (variable)

Slopes <8%, 8%–30%, and >30%
No threshold to HRUs definition

RESULTS

CONCLUSIONS

- Hargreaves PET method

- Sensitivity analysis
- Model calibration

INTRODUCTION

SWATplus-CUP

METHODOLOGY

Selected SWAT+ parameters and sensitivity analysis

			P-value		
	Parameter	Description	DSOLMap	HWSD	DSWM
6	BD().sol	Soil bulk density	< 0.01	< 0.01	< 0.01
ı I	K().sol	Saturated hydraulic conductivity	< 0.01	< 0.01	< 0.01
	EPCO.hru	Plant uptake compensation factor Initial SCS runoff curve number	< 0.01	< 0.01	< 0.01
	CN2.hru	condition II	< 0.01	< 0.01	< 0.01
	AWC().sol	Available water capacity	0.01	< 0.01	< 0.01
	SURLAG.bsn	Surface runoff lag coefficient	0.33	0.04	0.20
	ALB().sol	Moist soil albedo of top soil horizon	0.34	0.26	0.60
	ALPHA_BF.aqu	Alpha factor for groundwater recession curve	0.35	0.75	0.58
	REVAP.aqu	Groundwater revap coefficient	0.59	0.78	0.42
	ESCO.hru	Soil evaporation compensation factor	0.71	0.86	0.02
	LAT_TTIME.hru	Lateral flow travel time	0.82	0.40	0.39
1		Calibration			
m-ı	up 1991	1992-2004 200)5-2018	Vali	dation

RESULTS

Soil properties

SWAT+ model calibration

Selected SWAT+ parameters for streamflow calibration

			Best fitted values		
		Calibration			
Parameter	Change type	Range	DSOLMap	HWSD	DSWM
BD().sol	Percentage change	±20%	+14.27	-18.36	-14.84
K().sol	Percentage change	±20%	+14.085	+16.2	+19.32
EPCO.hru	Absolute change	0 - 1	0.92915	0.7745	0.9685
CN2.hru	Percentage change	±20%	+2.71	-19.88	+1.72
AWC().sol	Percentage change	±20%	-13.455	-16.04	-15.32

***** Daily and monthly statistical indices <u>before</u> calibration

		Daily				Monthly				
	📥 🗄	Scenario	KGE	NSE	PBIAS	R ²	KGE	NSE	PBIAS	
÷		DSOLMap	0.53	-0.02	-0.27	0.41	0.87	0.78	-0.86	
		HWSD	0.43	-0.23	-3.5	0.41	0.83	0.74	-4.14	
		DSWM	0.27	-0.66	-1.95	0.36	0.76	0.65	-2.68	
NTRODUCTION	METHODOLOGY	RESULTS		CON	CLUSIONS					

R² 0.81 0.79 0.75

14

Hydrological performance

UCAM

16

Average annual values of the estimated hydrological processes in the Anduña watershed * for DSOLMap, HWSD and DSWM scenarios

	Before calibra (1992–2018)	tion	After calibration and valida (1992–2018)			ion
Hydrological process (mm/year)	DSOLMap	HWSD	DSWM	DSOLMap	HWSD	DSWM
Precipitation	1,737	1,737	1,737	1,737	1,737	1,737
Potential evapotranspiration	835	835	835	835	835	835
Actual evapotranspiration	756	713	723	752	748	779
Surface runoff	542	620	817	325	435	754
Base flow	403	356	128	635	516	152
Soil water content	378	255	256	221	335	339
INTRODUCTION	METHODOLOGY		RESULTS	CONC	LUSIONS	

- ✓ Using soil maps with finer *spatial resolution* and more detailed *soil profiles*, such as DSOLMap, in hydrological modelling lead to a better representation of daily hydrological responses.
- After *calibration*, only the DSOLMap reached satisfactory daily streamflow predictions with a *minimal variation range* of the SWAT+ parameters.
- ✓ For the Anduña watershed, the *hydrological process estimations* were aligned between the DSOLMap and the HWSD but not with those of DSWM.

THANKS FOR YOUR ATTENTION

How to cite:

<u>López-Ballesteros, A</u>.; Nielsen, A.; Castellanos-Osorio, G.; Trolle, D.; Senent-Aparicio, J. (2023). **DSOLMap, a novel high-resolution global digital soil property map for the SWAT + model: Development and hydrological evaluation**. Catena, 231, 107339.

https://doi.org/10.1016/j.catena.2023.107339

Catena 231 (2023) 107339

DSOLMap, a novel high-resolution global digital soil property map for the SWAT + model: Development and hydrological evaluation

Adrián López-Ballesteros^{a,*}, Anders Nielsen^b, Gerardo Castellanos-Osorio^a, Dennis Trolle^b, Javier Senent-Aparicio^a

^a Department of Civil Engineering, Catholic University of San Antonio, Campus de Los Jeronimos s/n, 30107 Guadalupe, Murcia, Spain ^b WaterTech, Krakesrej 53, 8660 Skanderbarg, Denmark

UCAM

.....