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What is 
Life 
Cycle 
Assess
ment 
(LCA)?



AGRILIFE CONFIDENTIAL

West Texas (9/1, 9/14, 9/21)

• Estimated CIs for the farming 
transportation, oil extraction, and 
ILUC of ‘Diesel Nut’ and edible 
peanuts in six scenarios  and 
soybean oil production in the 
GREET model:

o  based on a functional unit of 1 
kg  

o 100-year global warming 
potentials (GWP) (IPCC).

o The highest CI is estimated in 
the N4 Dryland scenario, which 
is still much lower than that of 
soybean. The lowest CI is in the  
Wilmeth South scenario.

South Texas (9/22)

Carbon Intensity of Peanut and Soybean



Hydrologic models can help run sensitivity analysis
Base: 28.98 g CO2e/MJ  

Base: 20.69 g CO2e/MJ  

Base: 14.63 g CO2e/MJ  Base: 13.45 g CO2e/MJ  

Base: 13.5 g CO2e/MJ  Base: 13.79 g CO2e/MJ  



Research 
importance

The integration of hydrologic models and life cycle assessment 
(LCA) is becoming increasingly important due to the growing need 
to estimate carbon emissions from various production processes, 
driven by climate change concerns. LCA and, in particular, life 
cycle impact assessment (LCIA) are key tools for estimating carbon 
emissions, and they can be used to evaluate and compare best 
management practices (BMPs) within hydrological models. 



LCA and hydrological 
models

LCA and LCIA analyses are often missing from hydrologic models, and LCA studies 
frequently lack the data that hydrological models can provide. For instance, hydrological 
models can aid in estimating water footprint—such as available water in a watershed (blue 
water) and soil moisture (green water)—which is a common challenge in LCA. Additionally, 
hydrologic models can provide valuable data on biomass and N2O emissions, soil organic 
carbon (SOC) from soil plowing and harvesting, helping to complete life cycle data inventories 
(LCI). For instance, the required parameters for SOC modeling, are actual evapotranspiration, 
soil cover, soil humidity, and soil erosion by water that can be simulated using the Revised 
Universal Soil Loss Equation (RUSLE). This empirical model is a widely used model for 
estimating long-term average annual soil erosion rates, particularly sheet and rill erosion 
caused by rainfall and runoff. 



SWAT inputs for LCA
SWAT Input Use in LCA

Weather data (precipitation, temp) Impacts evapotranspiration and crop growth modeling; affects water footprint and yield in LCA.

Soil data (texture, bulk density) Influences SOC modeling and erosion; affects emissions from soil disturbance and carbon sequestration.

Land use / land cover data Key for estimating biomass production and soil erosion; helps define system boundaries in LCA.

Management practices (tillage, fert) Defines scenarios for BMP comparison; input for LCI regarding inputs and operations.

Crop type and rotation Determines crop yield, biomass, and residue; input for feedstock life cycle inventories.

Fertilizer and pesticide application N₂O emissions estimation; connects to LCIA categories like eutrophication and global warming.

Irrigation data Defines blue water use; directly feeds water footprint and energy for pumping in LCA.

Modeling saves time and cost



SWAT outputs for LCA
SWAT Output Connection to LCA

Actual evapotranspiration (AET) Required for modeling SOC; used in estimating water use (green water footprint).

Soil moisture Used to estimate water availability; affects water stress impact categories.

Blue water use (stream withdrawal, irrigation) Critical for water footprinting in LCA.

Green water use (soil water evaporation and 
transpiration)

Impacts water availability for crops and natural systems.

Soil erosion (via RUSLE) Needed for LCI related to soil carbon loss; supports erosion impact categories.

Crop yield / biomass production Direct input for calculating functional units (e.g., per ton biomass) and energy output.

Runoff and nutrient losses N and P loading impact eutrophication categories in LCIA.

SOC change (if modeled via plugin) Important for estimating net carbon fluxes; links to GHG emissions.

N₂O and CH₄ emissions (with modifications) Emissions from soils; direct input to GHG inventories and LCIA climate change category.



LCA components can improve using SWAT
LCA Phase What SWAT Provides

Goal and scope definition Helps define BMP scenarios, spatial scales, and temporal boundaries.

Inventory analysis (LCI) Supplies data for crop yields, input rates, irrigation, erosion, water flows, and emissions.

Impact assessment (LCIA) Provides emission data for categories like global warming, eutrophication, land use, and water scarcity.

Interpretation Enables scenario comparison (e.g., BMPs vs. baseline) based on system-level emissions and resource use.





SWAT+ Model Setup
Study Area: 

• Fluvià watershed (Catalonia, Spain) — 97,070.32 ha

Inputs: 

• DEM, land-use and soil maps, weather data (rainfall, 
temperature, solar radiation, humidity, wind) 

Outputs: 

• Water balance variables, yields, channels, soil organic 
carbon

Model Setup & Calibration: 

• Simulation period: 2013-2023 

• Spatial resolution: Hydrological Response 
Units (HRU), based on agr. land-uses 

• 4820 selected HRUs (out of 9526)

• Crops simulated: wheat, wheat irrigated, 
barley, barley irrigated, canola, canola 
irrigated, rye irrigated

• Calibration against streamflow data (2013-
2023), satellite ETa data (2019–2023), crop 
yields 







Calibrated parameters



PBIAS: 0.042
NSE: 0.18

Calibration outputs for discharge



Comparison of observed and simulated yields 
crop type Observed yields 

[t/ha]
Simulated yields 
[t/ha]

Relative error

wwht 3.67 3.05293 -0.20127

barl 3.53 4.592562 0.232215

cana 2.55 2.305529 -0.10803

rye 3.80 2.324879 -0.63522

almd 0.55 0.591229 0.064543

alfa 7.99 7.519384 -0.06305

csil 12.01 9.876615 -0.21616

oats 2.32 2.548039 0.089309

oliv 0.43 0.535464 0.205541

sunf 1.76 2.839274 0.379066

appl 7.20 6.397826 -0.1251

agrl 1.34 2.161055 0.381452

0.000274

Relative error for calibrated 
average annual crop yields: 0.03 %

Yields data are obtained from the Spanish Government 
(Ministerio de Agricultura, Pesca y Alimentación)

https://www.mapa.gob.es/es/estadistica/temas/publicacio
nes/anuario-de-estadistica#ancla2

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.mapa.gob.es%2Fes%2Festadistica%2Ftemas%2Fpublicaciones%2Fanuario-de-estadistica%23ancla2&data=05%7C02%7Chadi.bazrkar%40ag.tamu.edu%7C64a2bc45f4044b5fed8908de1011b289%7C9fd7580a64724d9ca142d131d3a7a116%7C0%7C0%7C638965865386131047%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bT%2F4zaSVNX3HZ8kQ%2FcHp7WJyEOFfRIUu%2B95Dcv1Fhlg%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.mapa.gob.es%2Fes%2Festadistica%2Ftemas%2Fpublicaciones%2Fanuario-de-estadistica%23ancla2&data=05%7C02%7Chadi.bazrkar%40ag.tamu.edu%7C64a2bc45f4044b5fed8908de1011b289%7C9fd7580a64724d9ca142d131d3a7a116%7C0%7C0%7C638965865386131047%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bT%2F4zaSVNX3HZ8kQ%2FcHp7WJyEOFfRIUu%2B95Dcv1Fhlg%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.mapa.gob.es%2Fes%2Festadistica%2Ftemas%2Fpublicaciones%2Fanuario-de-estadistica%23ancla2&data=05%7C02%7Chadi.bazrkar%40ag.tamu.edu%7C64a2bc45f4044b5fed8908de1011b289%7C9fd7580a64724d9ca142d131d3a7a116%7C0%7C0%7C638965865386131047%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bT%2F4zaSVNX3HZ8kQ%2FcHp7WJyEOFfRIUu%2B95Dcv1Fhlg%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.mapa.gob.es%2Fes%2Festadistica%2Ftemas%2Fpublicaciones%2Fanuario-de-estadistica%23ancla2&data=05%7C02%7Chadi.bazrkar%40ag.tamu.edu%7C64a2bc45f4044b5fed8908de1011b289%7C9fd7580a64724d9ca142d131d3a7a116%7C0%7C0%7C638965865386131047%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bT%2F4zaSVNX3HZ8kQ%2FcHp7WJyEOFfRIUu%2B95Dcv1Fhlg%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.mapa.gob.es%2Fes%2Festadistica%2Ftemas%2Fpublicaciones%2Fanuario-de-estadistica%23ancla2&data=05%7C02%7Chadi.bazrkar%40ag.tamu.edu%7C64a2bc45f4044b5fed8908de1011b289%7C9fd7580a64724d9ca142d131d3a7a116%7C0%7C0%7C638965865386131047%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bT%2F4zaSVNX3HZ8kQ%2FcHp7WJyEOFfRIUu%2B95Dcv1Fhlg%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.mapa.gob.es%2Fes%2Festadistica%2Ftemas%2Fpublicaciones%2Fanuario-de-estadistica%23ancla2&data=05%7C02%7Chadi.bazrkar%40ag.tamu.edu%7C64a2bc45f4044b5fed8908de1011b289%7C9fd7580a64724d9ca142d131d3a7a116%7C0%7C0%7C638965865386131047%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bT%2F4zaSVNX3HZ8kQ%2FcHp7WJyEOFfRIUu%2B95Dcv1Fhlg%3D&reserved=0


SWAT+ carbon modeling output



Results of modeled (SWAT+) vs observed ETa data

PBIAS: -3.30% 
R²: 0.72 



Roth-C for SOC modeling

The first version of RothC created by David Jenkinson and James Rayner in 1977 (Jenkinson 
and Rayner, 1977).

Estimating SOC based on RothC version by Mondini et al. (2017).



Selected HRUs based on crops and irrigation type



Roth C model Set up

· Input data: Soil Data (DSOLMap)

· Climate Data over 10 years: 2013-2022

· Crop yields from SWAT+ over the period 2013-2022.

· Depth selected was 30 cm.

· RothC DPM-RPM ratio was assumed as 1.44.

· Initial SOC per site estimated based on soil organic carbon content, bulk density, soil depth 
and corrected by coarse fraction.



Roth C model set up and assumptions

Fractions of SOC pools estimated based on the pretransfer function by Weihermüller et al. 
(2013) and inert pool based on Falloon et al. (1998).

· Resource-to-product ratios per crop type for West Europe from Ronzon et al. (2015)

· Root-to-shoot ratios per crop type from IPCC (2006), Chap. 11, Table 11.2.

· Total carbon inputs to soil consisted of crop residues and root fraction.

· Carbon content in the aboveground residues and roots assumed to be 50%.

· Harvest month was June except for site hru0845 and hru1171 which was May.



Carbon modeling



Roth C outputs

Initial SOC per site estimated based on soil organic carbon content, bulk density, soil depth 
and corrected by coarse fraction.



Roth C outputs (Not calibrated yet)



Future works

Calibration and validation of carbon in SWAT+ and Roth C

Comparison of carbon outputs in SWAT+ and ROTH C

Integration of Roth C and SWAT+

Working on other components of LCA



Thank you! Any 
Questions?
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