Assessing the Impact of Soil Data Resolution on Streamflow Prediction with SWAT in a Mesoscale Headwater Basin of Sri Lanka

Shanali Fernando, Lulu Zhang, Karl-Heinz Feger

10-12 July 2024 | Strasbourg, France

Background

• Significance of Hydrological Models

 Hydrological models are vital tools for comprehending watershed dynamics and the influence of human activities on water resources (Bevan, 2001).

Critical Role of Soil Data

- Soil data is essential for accurate hydrological cycle representation and model performance (Nearing et al., 2005).
- Coarse spatial resolution of global digital soil maps introduces substantial uncertainties in model outputs despite rigorous calibration efforts (Thompson et al., 2011).

Advancements in Digital Soil Mapping

- Recent developments in high-resolution digital soil maps significantly enhance model accuracy (Zhu et al., 2001).
- These advancements enable better decision-making to tackle global water resource and environmental challenges (Grunwald et al., 2011).

Case Study Area – Upper Kotmale

Major tributary of the Mahaweli river

- Latitudes: 36°27' 37°58' N
- Longitudes: 108°41'-110°29' E
- Length: 70 km
- **Basin area:** 571.2 km²
- Elevation: 916 2510 msl
- Annual rainfall: 1800 2500 mm
- Annual temperature: 8.8 24.2 °C
- Capacity of Reservoir: 174 Mi cm³
- Capacity of Hydropower Generation: 134 MW

Rainfall seasons

- Wet season: May December
- Dry season: January April

Methodology

SWAT model set-up

Data	Source	Spatial Resolution
Meteorological Data	Department of meteorology, Sri Lanka	Station
Streamflow	Irrigation department, Sri Lanka	Station
DEM	USGS - SRTM	30m
Land Use/ Land Cover	LandSAT (USGS)	30m
Soil	ISRIC	250m
	Digital soil mapping	30m

SoLIM model set-up

1.Topographic Covariates

- 1. Elevation
- 2. Slope
- 3. Aspect
- 4. Profile curvature
- 5. Planform Curvature
- 2. Climate Covariates
- 3. Land cover Covariates
- 4. Geological Covariates

Impact of soil data on hydrologic response units

Impact of soil data resolution before calibration

Uncalibrated streamflow

Uncalibrated data provide a better visualization of the importance of soil data resolution in hydrological modeling

Sensitivity analysis

Parameters	Description
CN2	Initial SCS runoff curve number
SOL_K	Saturated hydraulic conductivity
CH_N2	Manning coefficient for the channel
ALPHA_BF	Baseflow alpha factor
BD	Soil bulk density
GW_DELAY	Ground water delay time
CH_N1	Manning coefficient for tributaries

P-Value			
SoLIM	ISRIC		
0.00	0.00		
0.01	0.01		
0.01	0.01		
0.01	0.01		
0.02	0.02		
0.05	0.06		
0.07	0.08		

Impact of soil data on model calibration and validation

SoLIM ISRIC

Performance Indicator	Calibration	Validation	Calibration	Validation
NSE	0.81	0.74	0.77	0.71
R	0.91	0.90	0.88	0.87
R2	0.83	0.81	0.79	0.76

Observed Streamflow Simulated Streamflo

+ -

Impact of soil data on model calibration and validation

SoLIM **ISRIC**

Performance Indicator	Calibration	Validation	Calibration	Validatio
NSE	0.79	0.71	0.76	0.61
R	0.88	0.87	0.84	0.81
R2	0.77	0.75	0.71	0.56

Model Performance

Summary and Key Takeaways

Summary

- Resolution of soil maps used as input for SWAT significantly influences the number of HRUs delineated within the model.
- Lower resolution of global soil data tends to overpredict streamflow before calibration compared to high-resolution soil data.
- Despite initial discrepancies, both high-resolution and low-resolution soil data can be calibrated to produce satisfactory streamflow simulations.

Takeaways

- Resolution of soil data used in SWAT is crucial for maintaining the accuracy of water flux simulations. Hence, high-resolution soil data provides detailed spatial information, leading to more precise modeling of hydrological processes.
- High-resolution soil data simplifies the calibration and validation process. Detailed soil information allows for more accurate adjustment of model parameters, reducing the effort required to achieve satisfactory model performance.
- Utilizing high-resolution soil data improves model performance.

Funded by:

DRESDEN concept

SCIENCE AND INNOVATION CAMPUS

Shanali.Fernando@unu.edu

10-12 July 2024 Strasbourg, France

