

Development of an Eco-Hydrology Design Tool

Lauren Melendez Environmental Laboratory (EL) U.S. Army Engineer Research and Development Center (ERDC)

PI: Todd Steissberg, PhD, PE (USACE-EL)

Co-Authors:

- Isaac Mudge (USACE-MVN)
- Kelsey Walak (USACE-SPK)
- Chuck Downer (ERDC-CHL)
- Aaron Byrd (ERDC-CHL)
- Anthony Aufdenkampe (LimnoTech)
- Sarah Jordan (LimnoTech)
- Jason Rutyna (LimnoTech)
- Xavier Nogueira (LimnoTech)
- Billy Johnson (LimnoTech)

SWAT: JULY 2024

Introduction: Nutrient Flow through Ecosystems

- Nutrient flow through ecosystems has a profound impact on how species utilize resources across watershed scales.
 - Primary production
 - Species distribution and abundance
 - Ecosystem productivity and stability
 - Community composition and diversity
 - Carbon sequestration
- Human-caused disturbances are disrupting nutrient cycling, destabilizing ecosystem health and functioning.

Introduction: Simulation of Nutrient Flow at Watershed Scales

- Nutrient flow through ecosystems was not being simulated across watershed scales using a flexible integrated modeling system.
- This hindered our ability to:
 - Assess ecosystem risk analysis
 - Predict morbidity and mortality of key species
 - Predict spatial distribution of species across landscapes in response to changing conditions
 - Identify effective ecosystem restoration strategies and management interventions
 - Design measures to control the spread of invasive species

Introduction: Objective

Develop an integrated ecohydrology modeling system that simulates heat and nutrient flow through ecosystems.

Key: ERDC-EL – ERDC-CHL – HEC – USDA/Texas A&M

Watershed Runoff:

• Reservoirs:

modeling

modeling

• Rivers and Floodplains:

ClearWater: Next Generation Integrated Water Quality Modeling

ClearWater: Corps Library for Environmental Analysis and Restoration of Watersheds

- **Purpose:** Link environmental models with existing water resources models that simulate runoff, rivers, and reservoir hydraulics and hydrology
- ClearWater provides environmental simulation capabilities that are designed to leverage existing water resources models.
 - The ClearWater water quality modules simulate constituent kinetics, heat budget processes, and vegetation growth cycles. Capabilities include:
 - **NSM**: Nitrogen, phosphorus, and carbon cycling; dissolved oxygen, algae, etc.
 - **TSM**: Temperature (heat budget)
 - **GSM**: General Constituents
 - **CSM**: Organic and inorganic contaminants
 - **MSM:** Mercury
- ClearWater contains legacy modules written in Fortran and C++ and next-generation modules written in Python (NSM and TSM)
 - Engine computes the transport (advection and diffusion) of heat and constituent mass across the watershed
 - Data visualization capabilities
 - Framework to integrate multiple models.

ClearWater-Riverine

- Clearwater-Riverine simulates temperature and advanced nutrient cycling in branching river systems and floodplains, incorporating hydrodynamic, water quality, and meteorologic inputs from multiple data sources and models.
 - <u>Flows</u>: The model grid, volumetric flow, velocities, depths, diffusivity, etc. are provided by existing 2D water resources models.
 - HEC-RAS (2D)
 - GSSHA (in progress)
 - <u>Modules</u>: Water quality kinetics and heat budget simulation capabilities in ClearWater-Riverine are furnished by ERDC's ClearWater modules (e.g., NSM).
 - <u>Transport</u>: The ClearWater transport engine computes advection-diffusion of heat and mass through the model network.
 - <u>Framework</u>: The ClearWater framework links all the components together and performs the water quality compute sequence.
- Currently design is based on *decoupled* modeling, i.e., the flows are pre-computed by the hydro models.

USACE Water Quality Model Benefits

Determine the spread and transformation of nutrients and contaminants in the watershed.

- Nutrients and contaminants may spread through river, floodplain, and stormwater environments.
- In reservoirs, the vertical location controls chemical reactions related to oxygen and temperature levels.
- Understand the timeline of pollution events and ecosystem processes through animations of water quality simulations.
- Evaluate ecosystem impacts
- Evaluate restoration projects, adaptive management plans, and Nature-based feature designs

Rivers, floodplains, stormwater systems:

ClearWater-Riverine Example: E. Coli Transport in the Ohio River

ClearWater Water Temperature and Quality

Long term Goals: Nutrients and Plant Linkage

Nutrients

- Overland Kinetics
- Stream Kinetics
- Sub-surface Kinetics

ERDC Plant Modules Time Series and 2D Gridded Maps

- Velocities
- Shear Stresses
- Sediment/Soil Erosion and Deposition
- Flow Depths
- Nutrient Concentrations
- Water Temperature
- Etc.

Long term Goals: Linking with SWAT

- Integration of watershed and riverine modeling
- Improved prediction of water quality
- Assessment of Management practices
- Scenario analysis and planning
- Data integration and calibration

MODERN SCIENTIFIC PYTHON

Built using the cloud-native geospatial Python stack being widely adopted by NOAA, USGS, NASA, etc.

An object-oriented architecture inspired by xarray-simlab / fastscape and CSDMS LandLab

Automated unit testing

ERDC

OPEN CODE = BETTER SCIENCE https://numfocus.org/sponsored-projects

MODEL COUPLING

Modeling community moving toward systems of coupled models from modular model components.

BMI 2.0 has become the standard for model coupling

- Basic Model Interface (BMI)
 - Provides a common set of functions
 - To run models and exchange information and data on grids, variables, timesteps, etc.
 - Shares data among models using a zero-copy approach
 - Each model reads and writes to the same in-memory object using pointers
 - Supports models written in C, C++, Fortran, Java, Python, JavaScript, Julia
 - NOTE: BMI must be implemented in the source code of a model before it can be used to couple that model to other BMI-compliant models
 - Learn more: <u>https://bmi.readthedocs.io</u>

Demo Case Study: Sumwere Creek — Domain, Mesh, and Hydrodynamic Boundary Conditions

UNCLASSIFIED

Demo Case Study: Sumwere Creek — Depth at End of Simulation

Demo Case Study: Sumwere Creek — Velocity at End of Simulation

Coarse Mesh

Fine Mesh

Demo Case Study: Sumwere Creek — Temperature Boundary Conditions ERDC

Fine Mesh

Demo Case Study: Sumwere Creek — Temperature Boundary Timeseries

Coarse Mesh

Demo Case Study: Sumwere Creek — Meteorological Timeseries

Results – Animation

Results – Warm Powerplant Inflows

Fine Mesh

ClearWater Framework Summary

- ClearWater's Python-based framework allows easy integration with powerful interactive visualization packages
 - Enhanced understanding of complex environmental/ecological outcomes
 - Iterative analysis and scenario discovery
 - Multidimensional exploration across time and space
 - *Effective communication* of results across teams and stakeholders

Benefits

- Model linking using BMI enables a seamless exchange of data and information between different components of the integrated modeling system.
- Facilitates data-driven decision-making
- Enhances collaboration between scientific disciplines
- Integrated models that simulate the interactions between heat, nutrients, water flow, and vegetation enable a comprehensive representation of ecosystem dynamics.
 - Accurate representation of real-world processes
- Enables assessment of the ecological responses to various environmental changes, such as land use modifications, climate change, or nature-based feature design and Best Management Practices (BMPs)
- Example applications:
 - Setting nutrient loading limits
 - Designing buffer zones
 - Implementing BMPs to restore aquatic ecosystems

Thank You

UNCLASSIFIED

Questions?

Lauren Melendez Lauren.Melendez@usace.army.mil

Todd Steissberg Todd.E.Steissberg@erdc.dren.mil

UNCLASS

