Development of Sediment and Nutrient Export Coefficients for US Ecoregions.

> Mike White USDA/ARS Temple Texas

What are Export Coefficients?

History

- Predates models
- Date to 1970's
- Eutrophication linked to landuse
- Initiated monitoring studies for nutrients

What are Export Coefficients?

Estimated mass loss per unit area per year

By Landuse

USDA

- Derived from intensive edge of field monitoring
- Widely used.....Still

Example Use Watershed Load

Easy to apply Area * EC = Load

landuse	Area (ha)	Export Coeff (kg/ha/yr)	Load (kg/yr)
Forest	3500	0.1	350
Urban	500	4	2000
Corn	1000	2.5	2500
Grassland	5000	0.5	2500
Total Watershed	10000	-	7350

Problems

Edge of field monitoring

- Expensive
- Relatively rare

Vary regionally

- Climate Topography Soils
- Too little measured data for each region
- Extreme extrapolation
- High uncertainty

Solution

 Use SWAT to extrapolate limited monitoring data into a much larger dataset

SWAT Based Extrapolation

Edge of Field Observations

New Location

Runoff (Weighted by Monitoring Duration)

Calibration Validation Validated SWAT Model Template

SWAT Model

Template

Single Field

Export Coefficient Database

- Library of model predictions
 - National basis
 - Many many samples
 - Consider local conditions
 - Landuse
 - Soils

USDIN USD

- Climate
- Topography
- Management
- Conservation
- Summarize by major landuses for every ecoregion

US National Data

Existing National Data Landuse - NLCD – CDL Soils - STATSGO Topography – NED Seamless Climate Data 20,000 stations (1950-2010) Irrigation & Fertilization Ag Census Conservation Practices CEAP Survey 18,000 Management US RUSLE2 - 20,000 templates

USDA

Sampling - Overview

Sampling - Details

Management Assignment

Sampling and Simulation

Select a Nearby Climate Gage

5 year Simulation Random Start 1955-2010

Build a SWAT model Single Field

Execute Model

Store Output In National Database

One Down, Millions to go

- More samples is better
 - Provide EC distribution

Computationally Intense

- Windows Cluster
- 250 cores
- 5 days

Current National Database

- 45 million simulations/samples
- 1 for each 22 ha in the US

How to Use it

Grassland, Soil and Water Research Laboratory, Temple, TX

USDA

Ecoregion Summaries Cultivated Cropland

Ecoregion	n	Total Nitrogen	Total Phosphorus
		(kg ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)
Arizona/New Mexico	719	0.547 (0.019-5.22)	0.024 (0-0.303)
Mountains			
Arizona/New Mexico	1666	0.421 (0.061-2.44)	0 (0-0.043)
Plateau			
Arkansas Valley	4889	23.2 (7.33-48.8)	2.15 (0.372-5.05)
Atlantic Coastal Pine	4851	10.1 (5.23-39.4)	0.448 (0.075-3.8)
Barrens			
Blue Mountains	6515	1.87 (0.026-25.7)	0.106 (0-2.75)
Blue Ridge	3893	27.9 (10.7-63.6)	2.89 (0.749-7.35)
Boston Mountains	878	22.7 (9.43-52.1)	2.17 (0.555-5.44)
Canadian Rockies	2797	0.24 (0.014-2.46)	0.012 (0-0.199)
Cascades	877	32.7 (1.26-165)	3.11 (0.014-18.3)
Central Appalachians	1934	56.8 (16.8-97.3)	6.48 (1.05-11.4)
Central Basin and Range	5887	0.982 (0.034-13.5)	0.021 (0-1.39)
Central California Valley	41116	1.51 (0.008-13.5)	0.022 (0-1.22)
Central Corn Belt Plains	269810	28 (11.4-48.8)	2.45 (0.501-4.47)
Central Great Plains	584648	2.03 (0.188-11.7)	0.188 (0.011-1.23)
Central Irregular Plains	139179	26.7 (10.8-53.6)	2.69 (0.912-5.73)
Chihuahuan Deserts	2822	0.04 (0.003-1.02)	0.002 (0-0.089)
Coast Range	292	46.3 (8.76-224)	4.84 (0.462-26.2)
Colorado Plateaus	2473	0.452 (0.019-5.95)	0.029 (0-0.564)

Median value with range (10th and 90th percentiles).

Validation Compare to Monitoring Data

Measured edge of field loads Grassland 95 observations Cropland 91 observations Looking for distributional overlap

USDA

Applications

Large Scale Compare with CEAP

- Proper distributional sampling
 - Extract at differing spatial scales
 - Watershed HUC 8
 - County

Compare to CEAP Similar trends

National Water Balance

Small Watershed nutrIent Forecasting Tool

- Simple web based tool
- Predict nutrient and sediment loads
- Couples EC and delivery ratio concepts

http://swift.brc.tamus.edu/

http://swift.brc.tamus.edu/

USDA

mike.white@ars.usda.gov

