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Integrating uncertainty in model parameters, input, 

and model structure in watershed modeling



• Prevailing modeling practice

- rely on a single model

- consider only parameter uncertainty (parameter calibration)

• Multiple model structures

- tremendous amount of resources invested in developing 

more models

- simplified assumptions and mathematical representations

- no particular model is superior for all type of applications 

and under all conditions

• Input error model

- account for rainfall uncertainty 

Background



• Develop a procedure for integrating model parameter, 

input, and structural uncertainty for model calibration 

and uncertainty analysis

• Extend APEX-CUTE’s capability by incorporating 

- An input error model

- Bayesian model averaging (BMA) and 

- Dynamically dimensioned search – approximation

of uncertainty (DDS-AU)

Research Goal



APEX: Agricultural Policy Environmental eXtender

Can be configured for:

- Irrigation, furrow diking, buffer strips, terraces, waterways, fertilization, 

manure management, lagoons, crop rotation and selection, pesticide 

application, grazing, and tillage 

- Routing of water, sediment, nutrient, and pesticide

 
             Water Erosion Method           Formula 

General formula ROKFSLPECVFEKXY   

(1)  Modified USLE (MUSLE)      12.056.0)(586.1 AQqX p  

(2)  MUSLE variation 1 (MUST)      5.0)(5.2 pQqX   

(3)  MUSLE variation 2 (MUSS)      009.065.0)(79.0 AQqX p  

(4)  Onstad-Foster modification of USLE (AOF)      33.0

30 )(45.0646.0 pQqEIX   

 



Dynamically dimensioned search (DDS) (Tolson and Shoemaker, 

2007,WRR)

- fast approximate stochastic global optimization algorithm

- search scaled to pre-specified max # of function evaluations  

(global search at the beginning and more localized in the end) 

- perturbation magnitudes are randomly sampled from a normal

distribution with a mean of zero.          

Original APEX-CUTE (recently developed): APEX auto-calibration tool 

(Wang et al., 2014)

- accounted for parameter uncertainty only,

- used the dynamically dimensioned search (DDS) algorithm



DDS parameter estimation

1. Initialize starting solution

2. Perturb current best solution to generate candidate solution

3. Evaluate candidate solution and update best solution if necessary

4. Check stopping criterion (max # of model runs), if not go to step 2

Original APEX-CUTE

Parameter ranges

One water 

erosion option

Run 

APEX

Objective function

Max # of evaluations

Update 
APEX 
input 
files

BMA estimation: 

1. BMA weights; 2. BMA predictions

Save output

Optimal solutions

Input error model

Bayesian model 

averaging (BMA)

Uncertainty analysis

DDS-AU
Prediction bounds

Max # of iterations: m;  Training period: T 

Number of models: K; Converged: tol = 1e-6

m=m+1

m=1 

Load models Mk simulated results:

Xi,k ,( i=1,…,T, k=1,…,K)  

Observations: Yi

No

Expectation-Maximization (EM)
E-Step: calculate expectation (likelihood of model k to be true at time 

step i:

M-Step: calculate weights of model k: 

update the variance: 

Initial guess: = 1/K and = var(Y)

Output 

final wk
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Update the log-likelihood:  
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BMA estimation: 

1. BMA weights; 2. BMA predictions

1. MUST, 2. AOF, 3. MUSS, 4. MUSLE Save output

Optimal solutionPrediction bounds

DDS parameter estimation

1. Initialize starting solution

2. Perturb current best solution to generate candidate solution

3. Evaluate candidate solution and update best solution if necessary

4. Check stopping criterion (max # of model runs), if not go to step 2

Original APEX-CUTE

Parameter ranges

One water 

erosion option

Run 

APEX

Objective function

Max # of evaluations

Update 
APEX 
input 
files

Using all the remaining equationsRepeat until all equations are used for DDS calibration



Input error model
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m  352 10,10 m

: true rainfall depth at time t;  

: observed rainfall depth at time t; 

: represents a random multiplier (noise) at time t with 

mean m,                      and variance        ,

The rainfall uncertainty was considered using an input error model which assumes a 

random Gaussian error as a multiplier for each input rainfall observation as proposed 

by Ajami et al. (2007) (WRR):

Influential input or parameter Description Range Default
Chosen in the case study

(1: yes; 0: no)*

APEX CN2  (If Curve Number method 

used)

Initial condition II curve number (CN2) 

or landuse number (LUN)
± 5 - 1

Parm20 Runoff curve number initial abstraction 0.05 – 0.4 0.2 1

Parm46
RUSLE c factor coefficient in exponential 

residue function in residue factor
0.5 - 1.5 0.5 1

……. ……. ……. ……. …….

Input error model
m

Rainfall depth multiplier normal 

distribution mean
0.9 – 1.1 0.9 1

Rainfall depth multiplier normal 

distribution variance (in e-2)
0.001 – 0.1 0.001 1m



Bayesian model averaging (BMA)

        


m

k kkk

m

k kk

T

k MywMypYMpyp
11

|||

)( yp

)|( T

k YMp

)|( kk Myp

: weighted output distribution based on Mk considered models;

: posterior probability of model Mk being correct model given the training data YT,

: forecast pdf of output variable yk based on model Mk.

and it reflects how well model Mk fits the observed variable during the training

period T, and it is also known as the BMA weight wk.

Bayesian theorem is applied over a set of considered models, Mk, to calculate a

weighted probability distribution p(y) for model output:



DDS–approximation of uncertainty (DDS-AU)

• Proposed by Tolson & Shoemaker (2008), WRR.

• Relies on DDS optimization where multiple independent 

optimization trials (each with a relatively small number of 

model evaluations) are used to independently identify multiple 

acceptable or behavioral model parameter sets.

• Termed an approximation because it uses a pseudolikelihood

function (Nash–Sutcliffe efficiency, root mean square error, or 

aggregated statistics criterions) rather than a statistically 

rigorous likelihood function.

• Prediction bounds are constructed as the maximum and 

minimum values of the output among behavior runs.
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where k is total number of interested prediction/output variables for 

calibration, e.g., if both streamflow and sediment yield are to 

be calibrated, then k is equal to 2; 

wi is the weight assigned for the portion of the output variable i

performance;

OF is designed to maximize NSE and reduce |PBIAS| values.





Case Study

• Soil: Houston Black clay 

(fine, smectitic, thermic Udic

Haplusterts)

• Y6, Y8, and Y10: arable 

cultivated fields, terraced and 

planted on the contour, corn, 

winter wheat, sorghum, and 

oats rotation   

• Y2:  rangeland 

• Annual precipitation ranged 

from 470~1400 mm during 

study period (1999-2006).

USDA-Agricultural Research Service (ARS) Grassland, Soil and Water 

Research Laboratory experimental watershed (44 ha) near Riesel, Texas



Results

- Flow

Monthly 

observed & 

simulated 

flow 

based on 

calibration of 

the MUST 

erosion 

method 



Results

- Flow

Nash-Sutcliffe efficiency (NSE) and average percent error (PBIAS) of 

flow at the Y2 watershed outlet based on individual erosion method 

calibration and BMA prediction



- Sediment

Monthly 

observed and 

BMA 

predictions of 

sediment for 

calibration 

and validation 

periods.



Brier score to compare simulation skill of each erosion method and BMA technique

The higher 

score indicates 

the frequency 

of simulated 

target event is 

closer to the 

corresponding 

observed 

frequency, 

therefore 

higher BS 

values 

represents 

better 

simulation 

skill.  



Monthly sediment prediction bound based on BMA predictions

Y2

Y10



Conclusions

• The extended APEX-CUTE is a computationally efficient

and flexible tool.

• Monthly flow and sediment yields resulted in satisfactory

model performance.

• BMA predictions have relatively higher Brier scores in most

of the sediment yield regimes (10 intervals) than individual

methods, and also resulted in narrower prediction bounds.

• The results were limited in one watershed based on four

erosion methods within APEX, yet the approach provides

opportunity to better account modeling uncertainty where

multi-models are available.



Improving Life through Science and 

Technology.


