Web-based Real Time Flood Forecasting Using SWAT Model

By

Narendra Kumar Tiwary (Executive Engineer, Water Resource Department, Bihar, India Ph.D Scholar, IIT Delhi)

Prof. A.K.Gosain, IIT Delhi

Prof.A.K.Keshari, IIT Delhi

Use of New Technologies & Softwares in Flood sector

Introduction Flood is associated with a serious loss of life, property and damage to utilities.

Event-1 The man-made embankments of river Kosi failed

and Flooded north Bihar, India during 18 August 2008 434 Dead bodies were found until 27 November 2008

Event-2

• In June 2013, a multi-day cloudburst centered on the North Indian state of Uttarakhand caused devastating floods and landslides in the country's worst natural disaster since the 200 4 tsunami more than 5,700 people were "presumed dead. Destruction of bridges and roads left about 100,000 pilgrims and tourists trapped in the valleys

Event-2

05-08-2014

Dehradun -Capital of Uttarakhand

Challenge for Water Resource Engineers and Scientists

 Today, with modern equipments and radars we should have been able to predict the floods and expected inundation much earlier and stopped these human disasters

Important Questions to be answered

- Where the floodplain and flood-prone areas are?
- How often the flood plain will be covered by water?
- How long the flood-plain will be covered by water?
- At what time of year flooding can be expected?

Objective of the study

➤To modify SWAT model for real time flood forecasting and apply modified SWAT model for real time flood forecasting of river basins using web based data,

➤To enhance the forecast lead time by incorporating the rainfall forecast issued by IMD and assess its accuracy.

➤To map expected inundation, and flood zonation by integrating SWAT outputs into HEC GeoRAS and HEC-RAS models Real Time Flood Forecasting and Flood Plane Zoning System COPONENTS

- The Real Time Flood Forecasting and Flood Plain Zoning System usually consists of one or more of the following components:
 - 1. Rainfall Runoff Model.
 - 2. Runoff Routing Model.
 - 3. Error Analysis and Updating Technique
 - 4. Hydrodynamic model for channel routing (HEC-RAS)
 - 5. Generating TIN and delineating flood plain

METHODOLOGY USED IN PRESENT STUDY

- 1. Watershed delineation using SRTM DEM
- 2. Formation of HRUS
- 3. Writing input tables
- 4. Runoff generation using Green Ampt Method
- 5. Developing subroutines and modifying SWAT for real time flood forecasting application

Models for Forecasting

- Statistical/ Black box
 - Correlation
 - UH Based
 - Stochastic (ARMAX)
- Conceptual (Water Balance)
 - SWAT
 - HEC-HMS

Methods for Flood Forecasting

Simple correlations

- Use very little data
- Only gauge data is sufficient
- Work very well for reaches that ha small contribution from rain

Physically Based Models

To use the equations of mass, energy and momentum to describe the movement of water over the land surface and through the unsaturated and saturated zones.

Ways to enhance the forecasts

- Enhanced forecasts require data on rainfall
 - To incorporate the contribution of the catchment
 - To incorporate the impact of spatial variability
 - Forecast lead time increases on account of catchment lag
 - Addition to lead time is possible through precipitation forecasting

Surface runoff hydrograph generated by superimposing dimensionless triangular unit hydrographs

Gamma Distribution UH Method

The gamma distribution UH method adapted from Aron and White (1982) defines unit flow as follows:

$$q_{uh} = \left(\frac{t}{t_p}\right)^{\alpha} \cdot \exp\left(\left(1 - \left(\frac{t}{t_p}\right)\right)^{\alpha}\right)$$

where α is a dimensionless shape factor which is larger than zero.

MUSKINGUM ROUTING METHOD

The Muskingum routing method models the storage volume in a channel length as a combination of wedge and prism storages

$$V_{\textit{stored}} = K \cdot \left(X \cdot q_{\textit{in}} + (1 - X) \cdot q_{\textit{out}} \right)$$

The weighting factor, X, has a lower limit of 0.0 and an upper limit of 0.5. This factor is a function of the wedge storage. For reservoir-type storage, there is no wedge and X = 0.0. For a full-wedge, X = 0.5. For rivers, X will fall between 0.0 and 0.3 with a mean value near 0.2.

 $q_{out,2} = C_1 \cdot q_{in,2} + C_2 \cdot q_{in,1} + C_3 \cdot q_{out,1}$

where $q_{in,1}$ is the inflow rate at the beginning of the time step (m³/s), $q_{in,2}$ is the inflow rate at the end of the time step (m³/s), $q_{out,1}$ is the outflow rate at the beginning of the time step (m³/s), $q_{out,2}$ is the outflow rate at the end of the time

C	19 -	び - デ F14_Ch4_Methodology developed.doc [Compatibility Mode] - Microsoft Word												
9	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat						
Past	Cut	at Painter	Times New Roman B I U above	• 12 •	• A A • A		= * * <u>*</u> =*)(*	╪╪⋛↓╺ _■ · <u>♪</u> · ⊞	¶	AaBbCcDd	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI ¶ No Spaci	Aa Hea
	Clipboard	G.		Font	G.		Paragrap	h	G.					Style
L				1		. 7	1 * * * *	2	1.1	3	1 4 .		5 * * * 1 *	

4.1.2 Modifications in modelling architecture

All subroutines have been thoroughly studied and modelling architechture been reviewed. A new parameter "eventstatus" is defined. If "eventstatus" =0, orig SWAT is run without any modifications. It gives output on daily basis irrespective of weather data input being daily or sub-daily. This is the modelling design of the modified version of SWAT. The choices of eventstatus are given to the user during from program main.f. Next there are two options. The user can get subdaily outpu providing subdaily input data by putting "eventstatus" =1 or, he/she can use the conditions water in the reaches, soilwater content, baseflow, snow melt, hydra conductivity of soil, curve number, wetting front matric potential etc. from a previo saved file as initial conditions for the new run by putting "eventstatus" =2 and go for time flood forecast for "eventstatus" =3.

In the pre-modified SWAT, a model must run in daily loop starting with first of the first day and ending with 24th hour of the last day of declared simulation of the last d

immediately

C	19 -	じず	F14_Ch4_Methodology developed.doc [Compatibility Mode] - Microsoft Word											
	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat						
Paste	∦ Cut ⊫⊇ Copy ≪Forma	at Painter	Times New Roman B I II - about the second sec	• 12 •	A A ▲ → ♣ →		= • • <u>-</u> •	╞╴ <mark>╱╸</mark> ╺	T	AaBbCcDd ¶ Caption	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI 11 No Spaci	Аа Неа
	Clipboard	Q		Font	Gi.		Paragrap	h	G.					Style
				1		. 🖓	1	2		3	1 4 .		5 • • • • •	

2 . . . 1

Two new subroutines forecasthourly, f and swatforecast f have been developed and integrated into SWAT model and other related subroutines main.f. rout.f. rthourly.f surg greenampt.f for enabling it for hourly simulation and forecasting flows at outle points of different sub-basins. The new subroutines forecasthourly f and swatforecast. are attached with Appendix I and other modified sub routines are attached with Appendix II. Modified version of SWAT takes in sub-hourly rainfall data as input and estimates infiltration and excess rainfall by GAML (Green and Ampt Mein Larson) excess rainfal method. A dimensionless synthetic unit hydrograph is used for overland routing to forecast flows at outlet points of different sub-basins. Evapotranspiration, soil wate contents, base flow, lateral flow and snow melt are estimated on a daily basis and distributed equally for each time step. Subroutines have been modified to capture the fina conditions of the catchment at any desired instant. Catchment station is updated on real time basis after each time step. In modified SWAT, capability of event modelling has also been introduced. First of all the model is run in continuous mode to simulate the characteristics of the basin and validate the model using the historical flow data

C	19 -	日卡) Ŧ			F14_Ch4_Methodology developed.doc [Compatibility Mode] - Microsoft Word									
9	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat							
Paste	K Cut La Copy	at Painter	Times New Roman B I U ~ abet	• 12 •	A A A		≣ • *∓•)(* ≣ = (*	╞╒╞ ╞╴ <u>╶</u> ╸┈	¶	AaBbCcDd ¶ Caption	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI ¶ No Spaci	Аа Неа	
Ť	Clipboard	li Painter G		Font	G		Paragrap	h	5					Style	

ы

-

method. A dimensionless synthetic unit hydrograph is used for overland routing to forecast flows at outlet points of different sub-basins. Evapotranspiration, soil water contents, base flow, lateral flow and snow melt are estimated on a daily basis and distributed equally for each time step. Subroutines have been modified to capture the final conditions of the catchment at any desired instant. Catchment station is updated on real time basis after each time step. In modified SWAT, capability of event modelling has also been introduced. First of all the model is run in continuous mode to simulate the characteristics of the basin and validate the model using the historical flow data Subsequently the model is run in real-time mode with the initial conditions captured from the historical simulation. After every time step the modified SWAT captures and store status of the catchment at the end of the interval to be used as the starting status for the next interval. Also an error forecasting model has been developed by time series analysis of previous forecasts.

C	🚽 19 -	び -												
	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat						
Past	K Cut La⊇ Copy ≪ Forma	t Painter	Times New Roman B Image: Ima	• 12 •			= * * <u>*</u> *	∰∰⊉↓(≣+) (⊉ + III	¶	AaBbCcDd ¶ Caption	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI 11 No Spaci	Аа _{Неа}
	Clipboard	G.		Font	Gi		Paragra	ph	- Ga					Style
L				1		. 7	1	2	1.1.1	3	1 4 .		5 * * * * * *	

it was compulsory to provide rainfall and other input data upto the 24th hour even if it was not available till the end of the last day. Simulation had to be done till 24th hour. This modelling structure did not support event modelling. Two new variables 'starthour' and 'endhour' have been introduced. Starthour is the starting hour of simulation in the first day. Endhour is the last hour of simulation in the last day. The intended values of these two variables should be saved in the file 'simhour.dat' before running the model Likewise the starting day and ending day of simulation are controlled in file.cio as 'idaf and 'idal' respectively. The added advantage of this new provision is that simulation is made possible from one hour to another hour within the same day.

Two subroutines forcasthourly f and swatforecast f have been developed and integrated into SWAT for enabling it for hourly simulation and forecasting flows at outlet points of different subbasins. Modified version of SWAT takes in sub-hourly rainfall data as input and estimates infiltration and excess rainfall by GAML (Green and Ampt Mein

C	19 -	U+) ∓			velop	ped.doc [Compatibility Mode] - Microsoft Word							
9	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat						
Paste	Cut	at Painter	Times New Roman	• 12 •			= * * <u>-</u> -*) = = = =	┋╴┋╴ <mark>Ѯ</mark> ╷	¶	AaBbCcDd ¶ Caption	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI ¶ No Spaci	Аа _{Неа}
	Clipboard	G.		Font	G		Paragrag	bh	G					Style
L				1		. 7	1 1 1 1 1	2		3	1 4 .		5 * * * 1 *	

Two subroutines forcasthourly f and swatforecast f have been developed and integrated into SWAT for enabling it for hourly simulation and forecasting flows at outlet points of different subbasins. Modified version of SWAT takes in sub-hourly rainfall data as input and estimates infiltration and excess rainfall by GAML (Green and Ampt Mein Larson) excess rainfall method. A dimensionless time area diagram is used for overland routing to forecast flows at outlet points of different subbasins. Evapotranspiration, soil water contents, base flow, lateral flow and snow melt are estimated on a daily basis and distributed equally for each time step. This assumption is valid in view of the small contribution made by these components to the flood events.

If "eventstatus"=1 event modelling is done which acts as the first run of event modelling. This run is for a slightly longer duration which can help generate initial condition. Here modified subroutines <u>surg greenamptNKT f</u>, <u>forcasthourly f</u> <u>swatforecast f</u>, <u>rthourlyNKT f</u> are used for generating simulated/forcasted flows. Routing

0.	9 - 0	「フ・じ 」 テ マ F14_Ch4_Methodology developed.doc [Compatibility Mode] - Microsoft Word												
	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat						
Paste	∦ Cut ⊑⊇ Copy	Deinter	Times New Roman	• 12 •				╪╪ <mark>╞</mark>	T	AaBbCcDd	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI ¶No Spaci	Аа Неа
*	Clipboard	Painter G		Font	G		Paragra	ph	6					Style
				1	1	. 🛛	1	2 .		3	1 * * * 4 *		5 * * * 1 *	

points of different subbasins. Modified version of SWAT takes in sub-hourly rainfall data as input and estimates infiltration and excess rainfall by GAML (Green and Ampt Mein Larson) excess rainfall method. A dimensionless time area diagram is used for overland routing to forecast flows at outlet points of different subbasins. Evapotranspiration, soil water contents, base flow, lateral flow and snow melt are estimated on a daily basis and distributed equally for each time step. This assumption is valid in view of the small contribution made by these components to the flood events.

If "eventstatus"=1 event modelling is done which acts as the first run of event modelling. This run is for a slightly longer duration which can help generate initial condition. Here modified subroutines surg greenamptNKT.f. forcasthourly.f swatforecast f. rthourlyNKT f are used for generating simulated/forcasted flows. Routing option is managed/modified in route f (ievent=3 means hourly routing, irte=0 means

C .	🔒 🔊 -	U +	F14_Ch4_Methodology developed.doc [Compatibility Mode] - Microsoft Word											
9	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat						
Paste	🔏 Cut 📄 Copy	at Painter	Times New Roman B I U - above	• 12 •			= * * <u>-</u> ;- * = = = ■	╪╪⋛↓ _■ · <u>≫</u> · □	¶	AaBbCcDd ¶ Caption	AaBbC Heading 2	AaBbCcI ¶Normal	AaBbCcI 11 No Spaci	Аа неа
	Clipboard	G.		Font	5		Paragraj	ph	- Fa					Style
L				1		. 🖓	1 * * * 1	2	1.1.1	3	1 4 .		5 * * * 1 *	

routing by variable storage routing method and irte=1 means channel routing u Muskingum river routing method). During this run some important parameters such soil water, discharge values in the reaches at the endhour of last day, baseflows etc. stored in "StoreSoilWater dat", "EndWater dat" and baseflow dat respectively. storing helps in quick generation of more realistic results in consecutive short r Generally the values 1 and 24 can be entered in the simhour dat file. In the rare ca total data upto 24th hour is not available even for the first run, the endhour value can put as desired specially in case of real time flood forecasting.

"eventstatus"=2 is given for the consecutive/following runs (i.e., 2nd,3rd,4th, when the final situation has already been captured from a previous run. Here st values of <u>soilwater</u> and <u>endwater</u> are imported from previously saved files. After the run (eg: 2nd) the files "<u>StoreSoilWater.dat</u>" and "<u>EndWater.dat</u>" are overwritten with final values generated from the present run. These values are again used as in

Model Set up for study area

Data sets used

- The SWAT model requires data on terrain, land use, soil, and weather for assessment of inflows and outflows of reaches. Following datasets have been used for setting up of the SWAT model:
- (1) DEM SRTM (90 m resolution)
- (2) Landuse Global USGS (2 M)
- (3) Soil FAO Global soil (5 M)
- (4) Rain gauges /Temperature gauges IMD
- (5)Stream Gauges CWC
Study Area

BIHAR

Land dec classes for the Dagmati Dashi

N

C .	1 🖬 🤊 -	÷- گ	5 -‡ ₹								F16_Ch6_Application of modified SWAT mo			
	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat	Foi	rmat				
Past	Cut	at Painter	B Z U - a	• 12 •			= * * <u>-</u> -*)(* = ■ ■	≝≢≝≡(≙↓) ≣≁(<u>∆</u> -e	¶ 	AaBbCcDe	AaBbCc]	AaBbCcl I Heading 2	AaBbCcI ¶Normal	Aa
	Clipboard	G		Font	5		Paragrap	h	5					Style
			1		· · · 1_· · ·		2	3		4	5 .		A	;

Table 6.4Details of landuse

~~

÷		
NAME	GLB_LU	LANDUSE
URBN	URMD	Urban
AGRR	CRDY	Agricultural Land-Row Crop
AGRC	CRIR	Pasture
PAST	CRGR	Pasture
AGRL	CRWO	Agricultural Land-Generic
RNGE	GRAS	Range-Grasses
FRSD	SHRB	Forest-Deciduous
SPAS	SAVA	Summer Pasture
FRSE	FOEB	Forest-Evergreen
FRST	FOMI	Forest-Mixed
WATR	ICES	Ice/Water
L	1	

Division into subbasins

Soil Details

SEQN	SNAM	NLAYERS	HYDGRP	TEXTURE	SOL_AWC1	SOL_K1	CLAY1	SILT1	SAND1
3663	3663	2	С	LOAM	0.117	35.65	24	35	42
3664	3664	2	С	LOAM	0.157	28.52	17	36	47
3682	3682	2	D	LOAM	0.175	7.77	24	36	40
3684	3684	2	C	IOAM	0.175	13.92	22	38	41
3695	3695	2	C		0 175	14 96	20	40	40
3743	3743	2	D		0	6.48	18	44	38
3761	3761	2	C		0 175	24 73	20	2/	
2000	2000	2			0.175	6 17	20	25	40
3851	3851	2			0.175	7 17	21	25	37

GAUGE STATIONS

∃ 🗹 RG_GD ♦

Layout	References	Mailings	Review	View	Acrobat	Desig	gn Layout							
U - a	- 8 -	A A .		× *== *	∰∰⊉⊉↓ ≡-\&	¶	AaBbCcDd	AaBbCcI	AaBbCcI	AaBb(AaBbCo Heading 2	AaBbC	AaBbCcI	A. Su
_	Font			Paragra	ph	6				-	Styles			
	1 1 1 1	an en em∎ne en		1 * * *	<u>₩</u> + + 2 +	Π.N.	3	∖∰ י י י 4	Ⅲ • • • • Ⅲ	5 * * * #	6	7 .	•	

Table 5.3 Daily Rainfall, Temperature and Wind speed of 13-14 Sept-12 of Hayaghat (source: www.imdaws.com)

1.4.1	C.e.	
	_	
	-	

	TIME	RAINFALL	TEMPERATURE	DEW	WIND	WIND
	[UTC]	[mm]	[Deg C]	POINT	SPEED	DIR
DATE				[Deg C]	[Kt]	[Deg]
13-Sep-12	0:00:00	0	26.7	26.5	2	100
13-Sep-12	1:00:00	0	27	26.8	2	100
13-Sep-12	2:00:00	0	27.3	27.1	3	100
13-Sep-12	3:00:00	0	27.5	27.3	3	110
13-Sep-12	4:00:00	0	28.8	28.6	2	140
13-Sep-12	5:00:00	0	30.6	30.4	2	120
13-Sep-12	6:00:00	0	31.9	31.7	6	120
13-Sep-12	7:00:00	0	31.5	31.3	3	140
13-Sep-12	8:00:00	0	32	31.6	2	150
13-Sep-12	9:00:00	0	30.7	30.4	3	110
13-Sep-12	10:00:00	0	30.3	30.1	1	120
13-Sep-12	11:00:00	0	30.3	30.1	1	140
13-Sep-12	12:00:00	0	28.7	28.5	3	230
13-Sep-12	13:00:00	0	27.7	27.5	3	210
13-Sep-12	14:00:00	9	25.2	25	9	150
13-Sep-12	15:00:00	13	25	24.8	1	60
13-Sep-12	16:00:00	15	24.9	24.6	1	30
13-Sep-12	17:00:00	15	24.8	24.5	2	60
13-Sep-12	18:00:00	17	24.9	24.6	3	0
13-Sep-12	19:00:00	57	24.8	24.5	2	60
13-Sep-12	21:00:00	139	24.1	23.8	2	100
13-Sep-12	23:00:00	146	25.2	25	1	120

🔁 🛱 尾 🔅

C	1 🖬 🤊 -	U.F) -						Table	Tools	F15_Ch	5_Descriptior	of the stud	y area
	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat	Desi	ign Layout	t			
Î	Cut		Verdana	- 8 -	A A	*= * *	= * * <u>a</u> _*)	€E €E ĝ↓	T	AaBbCcDd	AaBbCcI	AaBbCcI	AaBb(Aa
Past	e 🛷 Forma	at Painter	B I <u>U</u> ∗ a	be x₂ x² Aa	• <mark>•</mark> • <u>A</u> •			≡- 🖄 - [1 Caption	¶ Normal	¶ No Spaci	Heading 1	Hea
	Clipboard	G.		Font	G.		Paragra	ph	G.					Style
L				1 * * *	i e e 🏨 e e	2.1.2.2	Ⅲ 1 · · ·	<u>₩</u> + + 2 +		3	4 • • • #	# • • • • #	5 • • • #	
-														

14-Sep-12	0:00:00	149	25.3	25.1	1	80
14-Sep-12	1:00:00	150	25.3	25.1	2	90
14-Sep-12	2:00:00	150	25.1	24.9	4	110
14-Sep-12	3:00:00	150	25.5	25.2	3	110
14-Sep-12	4:00:00	0	25.8	25.6	2	110
14-Sep-12	5:00:00	0	26.8	26.6	3	120
14-Sep-12	6:00:00	0	27.6	27.4	4	100
14-Sep-12	7:00:00	0	27.6	27.4	5	100
14-Sep-12	8:00:00	0	29	28.8	4	120
14-Sep-12	9:00:00	0	28.1	27.9	3	160
14-Sep-12	11:00:00	0	27.4	27.2	2	100
14-Sep-12	12:00:00	0	27.1	26.9	1	110
14-Sep-12	13:00:00	0	26.9	26.7	2	140
14-Sep-12	14:00:00	0	27.1	26.9	3	120
14-Sep-12	15:00:00	0	26.7	26.5	4	110
14-Sep-12	16:00:00	0	26.3	26.1	5	110
14-Sep-12	17:00:00	0	25.9	25.7	5	110
14-Sep-12	18:00:00	0	25.9	25.7	4	110
14-Sep-12	19:00:00	0	25.9	25.7	3	110
14-Sep-12	20:00:00	0	25.6	25.4	3	100
14-Sep-12	21:00:00	0	25.4	25.2	5	100
14-Sep-12	23:00:00	3	25	24.8	2	110

Ca									Table	F15_Ch5_Description of the study ar				/ area
	Home In	sert	Page Layout	References	Mailings	Review	View	Acrobat	Desi	gn Layout	:			
Paste	Cut		Verdana	- 8 -) 	╪╪⋛↓ ═┥╲╸╴╕	¶	AaBbCcDd	AaBbCcI	AaBbCcI	AaBb(Aa.
-	Format Pai Clipboard	nter G		Font			Paragra	 ph		" cuption	. Norma	a no spacin	ricuting 1	Style
L				1	n e e 🕮 🖂 e		I · · ·	Ⅲ (* * 2 *		3	× <u> </u>	<u>ш</u> е е п. е Ш	5 • • • #	

Table 5.8 Real time hydrological data for year 2012 downloaded from websites (17July-

4August)

	Discharge		Rainfall
	(Hayaghat)	WL	(Nagarkot)
Date	(cumecs)	(meters)	(mm)
17-Jul-12	83.047345	39.93	6.2
18-Jul-12	103.07675	40.27	6.2
19-Jul-12	149.41263	40.95	155.2
20-Jul-12	251.59863	42.15	8.8
21-Jul-12	379.84863	43.35	0.4
22-Jul-12	453.74763	43.95	7
23-Jul-12	487.79411	44.21	4.2
24-Jul-12	536.95535	44.57	1.8
25-Jul-12	542.56251	44.61	2.8
26-Jul-12	524.44512	44.48	0
27-Jul-12	493.14063	44.25	0
28-Jul-12	498.5161	44.29	0
29-Jul-12	424.64952	43.72	0
30-Jul-12	319.99122	42.82	0
31-Jul-12	231.83458	41.94	0
1-Aug-12	210.2245	41.7	0
2-Aug-12	189.65698	41.46	0
3-Aug-12	183.85451	41.39	0
4-Aug-12	183.85451	41.39	0

C .	1 🗐 -	U+) =						Table	Tools	F15_Ch	5_Descriptior	of the stud	y area
9	Home	Insert	Page Layout	References	Mailings	Review	View	Acrobat	Desi	gn Layout	:			
Past	Cut		Verdana	- 8 -			= * * <u>a</u> *	≢ ≇ 2 ↓ =- ^ ~ - :	¶	AaBbCcDd	AaBbCcI	AaBbCcI	AaBb(Aa.
*	Clipboard	t Painter G		Font	G.		Paragra	= >h	5	a caption	" Norman	a No Spacini	ricaulity 1	Style
L				1 1 1 1	n e e e∰ e e		1 1 1 1 1	🏛 т т 2 т	∎Z i	3	× <u> </u>	≞ • • • • ≞	5 * * * #	

Analysis of web based real time hydrological data of year 2012

Rainfall and water levels of Hayaghat gauge station for September 2012 w downloaded from websites www.imdaws, www.hydrology.gov.np. www.fmis.bih.nic (Table 5.8-5.10). Discharge was calculated using stage disch relationship of Hayaghat. It can be concluded that rainfall of Nepal portion produces p discharge at Hayaghat after 10 days. Hence correlation between rainfalls of Nepal por and runoff of Hayaghat is very interesting. The lead time at Hayaghat for rainfall of N portion is very high 4-8 days.

05-08-2014

Time in months of years 95-99

Calibration - Output

Calibration Results

- Seventeen parameters were selected for sensitivity analysis, calibration, validation and uncertainty analysis to be carried out by SWAT-CUP4 using SUFI algorithm. On the basis of global sensitivity analysis it can be concluded that most sensitive parameter is CN2.mgt followed by GW_DELAY, CH_N2.rte, ESCO.hru, HRU_SLP.hru, GWQMN.gw, GW_REVAP.gw and SURLAG.bsn. P-factor and r-factor for calibration were found to be 0.74 and is 0.44 respectively, which are very much within the range recommended for a perfect model. Seventy four 05-08 percent observed and simulated values lie in 95 PPU. P-55

Validatio for monthly flow

FLOW_OUT_18

95PPU

Observed

Model Performance Test

• The correlation statistics (R²) was determined to measure the linear correlation between the actual and the predicted values and it was found to be 0.93 which indicates the best performance of the model.

$$R^2 = -0.96$$

To estimate the efficiency of the fit, the Nash-Sutcliffe coefficient (Nash) (Nash and Sutcliffe, 1970) was used. It was found to be 0.96 which indicates the best performance of the model.

Daily Flow Valdation

Flow Hydrograph Daily Simulation

Flow Hydrograph of Hayaghat of July-04

-HayaSim

Valdation for daily flow 2010

Validation for hourly flow NE = 0.72

Validation Graph

ERROR ANALYSIS

• Time series analysis of errors in hourly simulations/forecasts has been performed. An ARIMA model developed for forecasting error has been deployed for correcting simulated/forecasted hourly flows. Integration of simulation capability of SWAT model and error forecasting capability by time series analysis has been done for solving the problem of realtime flood forecasting

Error 2004 Simulation

ERROR 4-July-28-July-04

Error 2004 hourly simulation

FIRST DIFF OF ERROR 4-July-28-July on y-axix and time in hrs on X-axix

Error analysis of 2004 flood event

ARIMA Model Parameters for error analysis for hourly simulation of year 2004

- ARIMA Parameters
- B1(LAG1)= 1.3153
- B2(LAG2)= -0.0162
- B3(LAG3)=-0.3013

Error Analysis

- There are 600 observed and simulated values. Four hundred data have been used for determining ARIMA model parameter and two hundred forecasted errors have been determined. Nash Sutcliffe coefficient before correction for forecasted period of error was 0.64 and after error correction it is 0.795.ARIMA model parameters are given below.
- b = 1.3153, -0.0162, -0.3013
- Z(t) = 1.3153 Z(t-1) 0.0162 Z(t-2) 0.3013 Z(t-3)

Hourly Simulation 2nd August-22nd August-05

Hourly 2005

- ARIMA Model Parameters for error analysis for hourly simulation of year 2005
- ARIMA Parameters
- B1(LAG1)= 0.6056
- B2(LAG2)= 0.1792
- B3(LAG3)=0.0988

1-July'10 time in hours 20-July

Real time flood forecasting

graph

Real time forecasting graphs

Real time forecasts issued on 20th July and 23 rd July'04

Real time forecast

Forecast generated at Benibad for July 2004 event

Forecast generated at Benibad for July 2004 event

Real time flood forecasting Graph

05-08-2014

Real time flood forecasting of Haya

Hourly Discharge

SUMMARY AND CONCLUSIONS

- (1)Increase in lead time(cathment response delay+travel time in channel) (2)Application possible in ungauged cathments also
- (3)Sediments, water quality and land use can be modelled on real time basis simultaneously
- (4)Physically based
- (5)Easy in adaptability
- (6)Capable of modelling snow melt, percolation, lateral flow and base flow
- (7)Parsimonious
- (8)GIS based
- (9)Inundation mapping and flood zonation easily possible
- (10) Easy updating of catchment characteristics
- (11)Capable to incorporate rain fall forecast of IMD and increase lead time
- (12)Increase in accuracy
- (13)Capable of generating synthetic sub-hourly hydrographs

CONCLUSIONS

As outcome of the present research work it can be concluded that Modified SWAT model combined with time series error forecasting ARIMA model and HEC-RAS hydraulic model can be used as an efficient tool for real-time flood forecasting and inundation mapping. Modified SWAT model reproduces stream flow hydrographs reasonably under multiple storm events and can be used as a real-time flood forecasting tool with enhanced lead time. Rainfall forecast can further increase the forecast lead time.

END

Thank You