Comparison between Climate Forecast System Reanalysis (CFSR) weather data and data from meteorological stations in Brazil to evaluate the suitability of CFSR data for SWAT

José A.F. Monteiro^{1,2} Björn Gücker¹ Raghavan Srinivasan²

¹Department of Biosystems Engineering, Federal University of São João del-Rei, MG, BR ²Spatial Analysis Laboratory, Texas A & M University, TX, USA

SWAT Conference, 31.07.2014

Hydrological Modeling - Input Data Challenges

Input Data

- Static data
 - Topography (DEM)
 - Soil type
 - Soil cover (natural vegetation vs. land use)
 - (River map)

Dynamic data (weather data)

- Temperature
- Precipitation
- (Solar radiation)
- (Relative humidity)
- (Wind speed)

Hydrological Modeling - Input Data Challenges

Input Data

- Static data
 - Topography (DEM)
 - Soil type
 - Soil cover (natural vegetation vs. land use)
 - (River map)
- Dynamic data (weather data)
 - Temperature
 - Precipitation
 - (Solar radiation)
 - (Relative humidity)
 - (Wind speed)

Hydrological Modeling - Input Data Challenges

Input Data

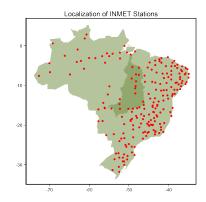
- Static data
 - Topography (DEM)
 - Soil type
 - Soil cover (natural vegetation vs. land use)
 - (River map)

Dynamic data (weather data)

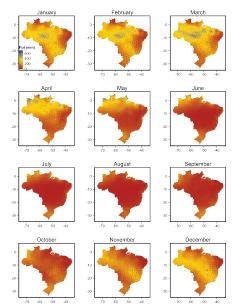
- Temperature
- Precipitation
- (Solar radiation)
- (Relative humidity)
- (Wind speed)
- Impossible to reassess!

Alternatives to observed weather data

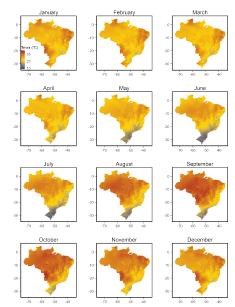
Name	Organization	Spatial res.	Temporal res.	Period
CRU	University of	0.5°	Monthly	1901–2012
	East Anglia			
MERRA	NASA	${\sim}0.5^{\circ}$	Hourly	1979–present
	GMAO			
CFSR	NCEP	0.5°	6 hourly	1979–2010

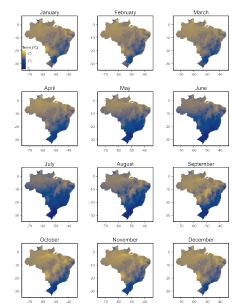

CFSR

- ▶ First climate reanalysis that includes atmosphere and ocean
- More accurate representation of observed mean precipitation in tropical regions (Wang et al. 2011, Clim Dyn)

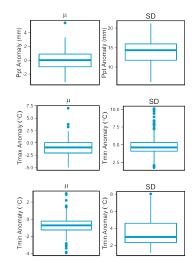

CFSR vs. INMET observations in Brazil

$\begin{array}{l} \mbox{Comparing CFSR to observed} \\ \mbox{weather data} \end{array}$


- INMET observed data
 - 209 stations: 1980-2010
 - (15 in the Tocantins Basin)
 - Uneven distribution
- CFSR for Brazil
 - 12,201 'stations'
 - (642 in the Tocantins Basin)


Geographic Consistency - Monthly Precipitation

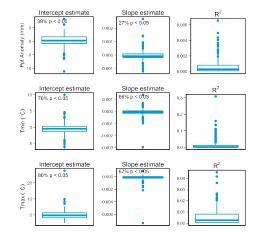
Geographic Consistency - Maximum Daily Temperature


Geographic Consistency - Minimum Daily Temperature

Daily Anomalies: Frequency Distribution

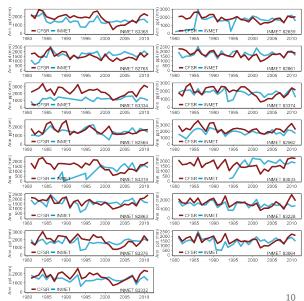
 $\mathsf{Anomaly} = \mathsf{CFSR} - \mathsf{INMET}$

- INMET stations paired with closest CFSR station
- Frequency distribution μ
- ► Frequency distribution *SD*



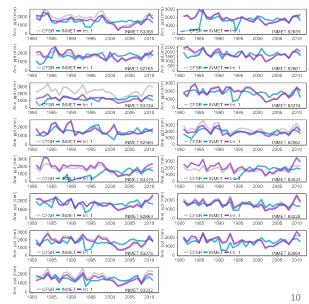
Daily Anomalies: Linear Regressions

Anomaly = CFSR - INMET

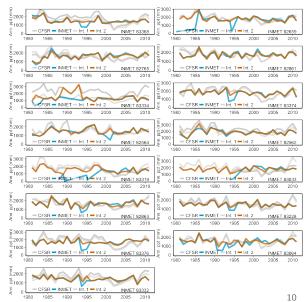

► Anomaly time series → linear regression

•
$$f(x) = a + bx$$

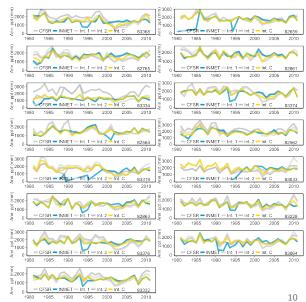
Annual Precipitation Time-Series


INMET vs. CFSR

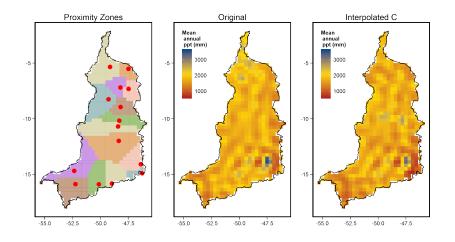
Annual Precipitation Time-Series


INMET vs. CFSR INMET vs. Int. 1

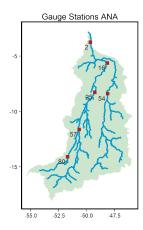
- $CF = \frac{CFSR}{INMET}$ $\frac{CFSR}{CF} = Interpolation$
- Corrected by means of monthly ratios (months as factors, i.e. Januaries, Februaries, etc.)


Annual Precipitation Time-Series

- INMET vs. CFSR INMET vs. Int. 1 INMET vs. Int. 2
 - Corrected by means of monthly ratios (months as time series, i.e. January 1980, February 1980, etc.)



Annual Precipitation Time-Series


- INMET vs. CFSR INMET vs. Int. 1 INMET vs. Int. 2 INMET vs. Int. C
 - Combination of both previous methods.
 - Whenever possible, use of Int. 1
 - Whenever INMET lack, use of Int. 2

Applying the Correction Factor

Interpolated Data Set Used in SWAT

12

Conclusion

- In the broad picture, CFSR represented Brazilian weather and is therefore a good alternative to observed data, especially for large-scale projects.
- Nevertheless, we advice a comparison with observed data previous to the use of CFSR for hydrologic modeling, and, if necessary, apply correction methods.

Acknowledgments

- ► Swiss National Science Foundation
- ► Jaclyn Tech, sending CFSR data
- ANA's personal, sending flow data

Thank you for your time!