

Use of SWAT for optimizing irrigation strategies for sugarcane production on the Island of Maui, Hawaii.

2014 International SWAT Conference Armação Hotel, Porto De Galinhas, Br. July 30 - August 1, 2014 Javier Osorio Jaehak Jeong Katrin Bieger Norman Meki Jeff Arnold

Hawaiian Commercial & Sugar Company

- Sugarcane 184.3 km²
- Average yield: 159.9 t ha⁻¹
- Irrigation: 760,000 m³ d⁻¹ (drip irrigation)

Maui / <u>HC&S</u> Introduction

- Climatic characteristics
- Water diversion & transport
- Water usage concerns

Maui, HI Introduction

- SWAT model
- Landuse:
 - 701 Sugarcane
- Soils data:
 - SSURGO
- HC&S Climate data:
 - 16 Weather stations
 - 40 Rain gauges
- Simulation period 2003-2013
 - 1 year spin up
- Crop parameters
- Irrigation DB
- Penman-Monteith method

Model setup Methods

- Climatic variables
 - Precipitation (mm)
 - Temperature (C)
 - Solar Radiation (MJm⁻²)
 - Wind Velocity (m/s)
 - Relative Humidity (%)
- Time period 1997-2013
- Data processing:
 - Historical extreme events
 - Missing data

HC&S Climatic DB Methods

Runoff	2.8
Evapotranspiration	1604.9
Lateral flow	19.2
Percolation	325.4
Soil Water Content	-8.4
Soil Water Content Precipitation	-8.4 65.0
Soil Water Content Precipitation Irrigation	-8.4 65.0 1895.8

Water budget (mm) Results

To perform a sensitivity assessment of sugarcane yields to various irrigation schemes.

Objective Introduction

- Treatments:
 - Historical Irrigation dataset (100%)
 - Treatments (+25, -25, -50, -75%)
 - Automatic irrigation
- Response variables:
 - Crop yield
 - WUE

Experiment Methods

• Measured LAI --- SWAT 2013

LAI (Obs : Sim) Results

Crop growth (Obs : Sim) Results

• Measured LAI -----ALMANAC

LAI (Obs : Sim) Results

Crop growth (Obs : Sim) Results

Crop Yield Results

Water Use Efficiency Results

Auto Irrigation Results

Auto Irrigation **Results**

Crop Yield **Results**

Water Use Efficiency Results

- Lessons learned
 - SWAT can adequately estimate sugarcane growth under different water management
 - Sugarcane yield and growth rate highly sensitive to water reductions.
 - Timing of irrigation is as important as volume applied
- Future work
 - WUE analysis entire plantation
 - Plant/Crop algorithm
 - Alternative biofuel crops

Lessons learned & Future work Conclusions

Armação Hotel, Porto De Galinhas, Br. July 30 - August 1, 2014

Javier M. Osorio Leyton, PhD. josorio@brc.tamus.edu

720 East Blackland Road | Temple, TX 76502-9622 http://www.blackland.tamu.edu

