Watershed scale sustainability analysis of land use and climate changes using SWAT model

Indrajeet Chaubey

Cibin Raj, Jane Frankenberger, Keith Cherkauer

Purdue University

July 31, 2014 SWAT International Conference

Funding: US Department of Energy, Office of Biomass Program

Increased demand for food and fuel will drive global-scale land use changes

- Rising energy cost is increasing interest in alternative sources for energy production.
- Bioenergy produced from annual and perennial feedstock has emerged as a viable option.
- The U.S.A. Energy Independence and Security Act (EISA) of 2007:

➤ 136 billion liters of biofuel by 2022.

Cellulosic ethanol and advanced biofuels: 79 billion liters

 However, unintended hydrologic/water quality consequences from large scale bioenergy production must be carefully evaluated.

Introduction

Dedicated Energy Crops : 65%Crop Residues: 20%Woody Biomass: 15%

Ethanol power plants in US, 2010

Source: http://www.ethanolproducer.com/plantmap/

Evaluate environmental sustainability of various plausible land and crop management options for biofuel production under changing climate scenarios

Research Highlights

- Energy crops (*Miscanthus* and switchgrass) parameterized with field data
- An improved SWAT model used to simulate impacts of perennial energy crop production on hydrology, water quality and environmental sustainability
 - Trybula et al. 2014. Global Change Biology-Bioenergy, doi 10.1111/gcbb.12210

Study Area– Wildcat Creek Watershed

- North-Central Indiana
- Area 2,045 km²
- Agricultural watershed: 70% Corn /soyb
- Calibrated with basin level parameters

Methodology: Energy crop scenarios

- Thirteen energy crop scenarios were developed with Miscanthus, switchgrass and corn stover removal
- Energy crop scenarios
 - Energy crops in high slope : >2% slope (Scenario 1-2)
 - Energy crops in agricultural marginal land: < 5 percentile yield (Scen 3-4)
 - Energy crops in Pasture areas (Scenario 6-7)
 - Crop residues –corn stover 70% (Scenario 5)
- Combinations of these scenarios (Scenario 8-13)
- Average annual impacts were compared

Methodology: Sustainability Indicators

	Category	Indicator	Unit	Indicator for	
1	Soil erosion and its impact on	Erosion	Mg/ha/year	soil loss and productivity	
2		Total nitrogen	Kg-N/ha	soil loss and productivity	
3		Extractable Phosphorus	Kg-P/ha	soil loss and productivity	
4	Water quantity, including High- flow frequency, Streamflow distribution, Streamflow variability, Low flows, and Groundwater recharge	Annual maxima and peaks and exceedances over threshold	m³/sec	High flow	
5		Runoff index	-	Stream flow distribution	
6		Richards-Baker Flashiness Index	-	Variability	
7		7 day average low flow for year	m ³ /sec	Low flow	
8		Water Stress Index (WSI)		Consumptive water use	
9	Water quality, including suspended sediment, nitrogen	Sediment load or sediment concentration	Mg/ha/year	Suspended sediment	
10		Nitrate and total nitrogen	Kg-N/ha	Nitrogen loading	
11	(dissolved and total), prosphorus	Organic phosphorus and total phosphorus	Kg-P/ha	Phosphorus loading	
12	Biomass and crop production	Total biomass and harvested yield	t/ha	crop production	
13	Profitability	Break-even feedstock price			
14	Aquatic biodiversity				

Methodology: Climate Change

- Precipitation and temperature from nine climate model simulations: 3 models (GFDL CM2.0.1, UKMO HadCM3 3.1 and NCAR PCM 1.3) for each of three future emission scenarios (A1B, A2, B1)
- Bias corrected and statistically downscaled with resolution of 1/8°
- climate data from 1950-2050: 10 years model warm up, 1960-1989(Past), 1990-2019 (present), and 2020-2049 (future)

Impacts of Bioenergy Scenarios - Miscanthus

Scenario1: >2% slopeScenario3: <5%ile yield</th>Scenario 5: Stover 70%Scenario6: PastureScenario8: >2% slope + PastureScenario 10: Stover 70% + >2% slope + PastureScenario 12 : All

Sustainability Indicators of Energy crop scenarios

14 years, 1996-2009, NCDC weather data, calibrated model, *Miscanthus* scenarios

	Unit	Baseline	Scenario 1	Scenario 5	Scenario 12
Erosion	Mg/ha	2.5	1.9	2.8	2.1
Final Org N (Init=13140)	kg/ha	12574	12582	12564	12572
Final Nitrate (Init=64)	kg/ha	57	55	49	46
Final Org P (Init=1610)	kg/ha	1533	1532	1526	1524
Final Min P (Init=287)	kg/ha	416	403	423	400
Avg of Annual Peak flow	m³/sec	284	280	280	271
Days over threshold	Days >300 m3/sec	18	17	17	14
Runoff Index	-	0.653	0.637	0.662	0.634
R-B Index	-	0.253	0.247	0.254	0.244
7day Avg low flow	-	C	C	C	0
Water Stress index	-	0.604	0.608	0.612	0.620
Sediment load (outlet)	Mg/ha	1.07	0.82	1.15	0.87
Nitrate load (outlet)	kg/ha	10.8	10.6	10.0	9.8
TN load (outlet)	kg/ha	19.4	18.0	18.9	17.2
Org P load (outlet)	kg/ha	1.4	1.2	1.4	1.1
TP load (outlet)	kg/ha	1.6	1.4	1.6	1.3

Climate change scenarios

Sustainable indicators of the **baseline scenario** with GCM data; average values from 9 GCM model simulations are provided

		1960-	1990-	2020-
	Unit	1989	2019	2049
Erosion	Mg/ha	1.92	1 2.13	3 2.23
Final Org N (Init=13140)	kg/ha	12052	2 11345	5 10684
Final Nitrate (Init=64)	kg/ha	80	0 100) 116
Final Org P (Init=1610)	kg/ha	1458	3 1363	8 1275
Final Min P (Init=287)	kg/ha	643	3 912	1187
Avg of Annual Peak flow	m ³ /sec	185	5 201	. 198
Days over threshold	Days >300 m3/sec	3.9	9 6.6	5 8.3
Runoff Index	-	0.537	7 0.519	0.516
R-B Index	-	0.215	5 0.208	0.208
7day Avg low flow	-	0.039	9 0.095	0.11
Water Stress index	-	0.594	4 0.573	0.585
Sediment load (outlet)	Mg/ha	0.83	3 0.94	0.98
Nitrate load (outlet)	kg/ha	12.5	5 14.6	5 14.9
TN load (outlet)	kg/ha	18.9	9 21.0) 20.9
Org P load (outlet)	kg/ha	1.1	1 1.4	l 1.5
TP load (outlet)	kg/ha	1.4	4 1.7	' 1.9

Climate change + biofuel scenarios

The bars indicate mean percentage change from 9 GCMs and error bars indicates min and max of 9 GCMs.

15

Conclusions

- Average stream flow, annual peak flow and number of days over threshold reduced with all bioenergy scenarios
- Energy crop scenarios in general improved water quality with exceptions of stover removal that increased sediment load and switchgrass replacing pasture that increased nitrate load at watershed outlet
- Average annual impacts on hydrology, water quality and sustainability indices with climate change data would be similar to current NCDC weather data
- Water quality benefits due to land use change is generally greater than the effects of climate change variability

