

Calibration of simulation platforms including highly interweaved processes: the MAELIA multi-agent platform

R. Lardy, P. Mazzega, C. Sibertin-Blanc, Y. Auda, J.-M. Sanchez-Perez, S. Sauvage, O. Therond SWAT conference, July 30 – August 1, 2014, Pernambuco, Brazil

Outline

Introduction

- The calibration process
- Calibration
- Results
- Conclusion

I. Introduction

- 1) The Context
- 2) The MAELIA model
- 3) The calibration issue

Context: the quantitative water management

I. Introduction

The MAELIA case-study: the Adour-Garonne bassin

1. Context: management of water scarcity

- Increase of the frequency of low water crisis in the recent years in the Adour-Garonne basin.
- During low water period (May-Octobre), irrigation = 75% of water withdrawal

Concerns related to climate change

 How to maintain the aquatic ecosystem and the farmers' activity ?

2. The MAELIA model

A generic platform for modelling and simulating socio-agro-hydrosystems to develop rules for sustainable water management during low-flow period, at watershed scale

I. Introduction

2. The MAELIA model

Ecological processes

- Soil-crop model
- Hydrologic model

Socio-economic processes (phenomena)

- **Demographic changes** (INSEE, municipality level)
- Land Cover changes (Corine Land Cover database)
- Drinking Water Consumption
- Industrial Water Consumption

Human activities (Decision process)

- Farmer decision
 - crop allocation plan
 - crop management
- State services decision:
 - decree of water-use restrictions (severity & spatial extension)
- Dam Manager decision:
 - water releases

Actor Resource Diagram (static model)

I. Introduction

2. The MAELIA model

Modular

- Mainly deterministic
- Multi-scale
- Daily time step

3. The calibration issue

- How to calibrate such a model?
 - o Modular
 - Spatialized
 - High level of interaction between processes (e.g. irrigation)
 - High non linearity (threshold effect)
 - Computation time constraints (~5H for 10 years)

II. The calibration process

- 1) The aims
- 2) The different steps
- 3) The optimisation method

1. The aims

- Reproduce
 - Dynamics during scarcity water period (duration during alarm thresholds)
 - Quantities (flows) in low water period
 - Anthropic effects (irrigation, dam supply, crop management)

- Aims definition (=> variables, parameters and data)
 - Unaffected data 1970-2008
 - Real data 2000-2012
- The sensitivity analysis (=> influential parameter)
 - Morris method (LHS-OAT)
 - Model with or without some modules

- The sensitivity analysis: a key step of model exploration
 - To get influential parameters
 - Check model stability => partial code validation
 - Verify where, when and how parameters are influential
 - => Go back to modelling step
 - Missing processes
 - Forcing data precision (e.g. number of altitude classes)

Hydrological parameters calibration

- Model without withdrawal (irrigation, channels)
- Unaffected data 1980-2000
- Farmer and dam agents calibration
 - Full model
 - Real flow data 2000-2005
- Evaluation and uncertainty analysis
 - Unaffected data 2001-2008
 - Real flow data 2006-2012

3. The choice of the optimization method

Multi-criteria optimization

- 4 numerical criteria
- 16 (over 33) hydrological influential parameters

Computation time constraint

- Simulation for the full model over 10 years:
 - ~5 H and 6 Go of RAM
 - => High performance computing, Design of Experiment (DoE) and metamodels

Get a parameter distribution

3. The optimization method

MAM : Multi-Point Approximation Method

- 1. We build a first DoE (Design of Experiments)
- 2. We regress metamodels
- 3. We search for optimums (Pareto front)

3. The optimization method

MAM : Multi-Point Approximation Method

- 3. We search for optimums (Pareto front)
- 4. We deduce a new research area
- 5. We iterate => update of response surfaces

III. Calibration

- 1) Data
- 2) Numerical criteria
- 3) Implementation

1. Data

Comparison data:

- Unaffected data 1975-2008
 - Roquefort
 - Valentine
 - Portet
- Calibration 1980-2000
 1977-1979 initialisation
 Evaluation 2001-2008

2. Numerical criteria

- One to reproduce value and dynamic of water flow
- 3 criteria on low water period dates
 - Length of scarcity period
 - Starting date of scarcity period
 - Ending date of scarcity period

3. Implementation

Design of Experiment (DoE) : LHS of size 160

3 response surfaces / criteria

- Kriging
- 3 types de covariance
- Weighing of response surfaces based on prediction efficiency (resampling technics)

3. Implementation

Pareto front search

- Gradient descent method (gradient available for Kriging)
- Local exploration of the Pareto front
 - Random selection of one of the criteria
 - Random spatial step
- o => Until 200 points

Computation on grid (~48H per step)

IV. Results

- 1) The parameters
- 2) Evaluation
- 3) Discussion

IV. Results

1. The parameters

Step N until convergence
 Non uniform convergence of parameters

2. Evaluation

Comparison over 2001-2008

- "unaffected" data
- Prior (before calibration): reference value ± 20% interval literature
- Posterior : Pareto front distribution
- Simple estimation of uncertainty by a LHS (not taking into account for covariance)

IV. Results

Roquetort 2004

30

3. Discussion

Difficulty to assess uncertainties of comparison data

Missing process in the model
 Hill dams

Negative correlation between criteria

3. Discussion

Non uniform convergence of parameters

Not influential enough parameters? Or too high correlation

- A single parameter set for the whole area: a mistake?
 - Necessary? Enough data available / how to avoid over parameterisation? Preliminary tests are planned

V. Conclusion

Conclusion

- Still ongoing work
 - Promising results
- A generic and robust method
 - Possibility to reuse the simulations base with other criteria
 - Not specific to this area, nor to this model
- Still some methodological questions
 - Refine DoE building
 - Proof of convergence

Thank you for your attention