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 Development of complex watershed models

◉ Evaluate impact from climate changing, various human 
activities on issues such as:

◉ Availability of water resources

◉ Water quality

◉ Watershed management

 Advanced technology in computer science

◉ Complex watershed simulation models

◉ Distributed in space & process-based 

◉ Long term simulations with large amount of data

Overview



 Why and how do we calibrate?

◉ Model parameters can be case sensitive

◉ Before conducting model simulation for various scenarios

◉ To ensure model responses are close to natural responses

◉ To minimize the “differences” between observed/simulated data by 

adjusting values of model parameters

◉ “Differences” can be calculated as?

◉ Error statistics (ex. RMSE, PBIAS, 1-NSE)

Calibration of Watershed Models



Sources of Uncertainty in Watershed Modeling

Watershed 
Model

Inputs Outputs

< Forcing Inputs > 
Climate: P, T, pressure, …, etc
Soils: types, texture, etc.
Land use/land cover: type, etc
Terrain and stream network

<Measured Fluxes> 
Streamflow
Sediment
Nutrients: N and P
Chemicals: atrazine

<Model Parameters> 
Curve number
Manning’s n
hydraulic K

<Model Structure> 
Surface, Subsurface Runoff processes 
Erosion and sedimentation
Soil biogeochemical processes
In-stream processes

M = {M1, M2, …}θ = {θ1, θ2, …}



Research Goal

◉ To incorporate the uncertainty from input, parameter, 

structural and measurement sources jointly during model 

calibration

◉ To understand the role and importance of four uncertainty 

sources during parameter estimation process

◉ To examine the effects of four uncertainty sources toward 

predictive uncertainty



 Parameter Uncertainty 

◉ Parameter estimation  

Incorporation of Uncertainty Sources

Dynamically dimensioned search (DDS)

- no need for algorithm parameter tuning 

- fast approximate stochastic global optimization

- search scaled to pre-specified max # of function evaluations  

(global search at the beginning and more localized in the end) 

- perturbed variables are generated from a normal distribution 

centered on current best value.          



 Input Uncertainty

Incorporation of Uncertainty Sources

Input error model
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: true rainfall depth at time t;  

: observed rainfall depth at time t; 

: represents a random multiplier (noise) at time t with 

mean m,                      and variance        ,

The rainfall uncertainty was considered using an input error model which assumes a 

random Gaussian error as a multiplier for each input rainfall observation as proposed 

by Ajami et al. (2007) (WRR):
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 Structural Uncertainty

Incorporation of Uncertainty Sources

Bayesian model averaging (BMA)
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: weighted output distribution based on Mk considered models;

: posterior probability of model Mk being correct model given the training data YT,

: forecast pdf of output variable yk based on model Mk.

and it reflects how well model Mk fits the observed variable during the training

period T, and it is also known as the BMA weight wk.

Bayesian theorem is applied over a set of considered models, Mk, to calculate a

weighted probability distribution p(y) for model output:



 Measurement Uncertainty (2/2)

◉ Incorporation of measurement uncertainty

◉ Probability distribution (PD) method

◉ Proposed by Harmel and Smith (2007)

◉ Assign a correction factor on error between observation and simulation 
quantities

Incorporation of Uncertainty Sources
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 Eagle Creek watershed

◉ Central Indiana, USA

◉ 248km2

◉ Available data 

◉ 1997~2003

◉ Streamflow (1 site)

◉ NOX (4 sites)

Case Study Area

Daily streamflow

Monthly Total Nitrate

Calibration (1997~2000)

Validation (2001~2003)



Case Study Settings 

Case 
Scenarios

Scenario Setup

Scenario I Calibration using SCSI

Scenario II Calibration using SCSI + IU

Scenario III Calibration using SCSII

Scenario IV Calibration using SCSI + MU

Scenario V Calibration using SCSI + IU + MU

Scenario VI Calibration using SCSII + IU + MU

Scenario VII Calibration using SCSI + IU + MU + Internal watershed behavior constraints

Scenario VIII Calibration using SCSII + IU + MU + Internal watershed behavior constraints

Scenario IX Apply BMA to Scenario V & VI

Scenario X Apply BMA to Scenario VII & VIII



 Denitrification 

Denitrification rate no more than 50 kg/ha/yr

 Ratio of NO3-N losses contributed from subsurface flow (SSQ) 

verse the total loss from SSQ and surface flow (SQ)

Greater than 0.6

If results violate these constraints, then the corresponding

model run is penalized by assigning an extreme value to the

objective function used in DDS minimization procedure.

Therefore, new search can avoid poor local optima.

Watershed behavior constraints



 Results of objective function values

Results 



 Best objective function values and the corresponding outputs 

Results 

Scenarios Objective Function
Denitrification 
(kg/ha)

NO3-N 
Loss Ratio

Scenario I 342.1 (399.6) 121.4 (16.9) 0.98 (0.94)

Scenario II 348.6 (379.4) 214.2 (30.4) 0.97 (0.99)

Scenario III 343.1 (373.1) 243.3 (7.1) 0.96 (0.98)

Scenario IV 342.4 (399.6) 211.4 (49.7) 0.98 (0.98)

Scenario V 340.1 36.1 0.96

Scenario VI 345.2 14.5 0.63

Scenario VII 343.0 36.1 0.92

Scenario VIII 344.7 49.8 0.79

( * ): Behavior Definitions applied (General Performance Ratings by Moriasi et al. 2007)



 Applications of internal watershed behavior constraints during 
calibration 

Results 
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Results 
Nash-Sutcliffe efficiency (NSE) and percent error (PBIAS) for calibration/validation 

periods at station #35 for streamflow. C.: calibration and V: validation. 

“original”: original calibration results; 

“filtered”: post-processed results after removing runs violated behavior constraints



Results 
NSE and PBIAS for calibration/validation periods for calibration 
cases I~IV at the 4 USGS stations (st.) for NO3-N loss. 



Results 
NSE and PBIAS for calibration/validation periods for calibration 
cases V-BMA(VII-VIII) at the 4 USGS stations (st.) for NO3-N loss. 



Results 

Percentage of observations within prediction bounds during validation 
for cases considered uncertainty in parameter, input data and 

calibration/validation data.



◉ Watershed behavior was more realistically represented when 

three or four major sources of uncertainty were considered 

without having to embed watershed behavior constraints in 

auto-calibration procedure;

◉ Inclusion of four uncertainty sources improved model 

simulations for both the calibration period and validation period; 

◉ Application of watershed behavior constraints improved the 

quality of calibration results.

Conclusions  
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