

SWAT 2014, Brazil, July 28-29

Development and Evaluation of SWATDRAIN Model for Simulating Hydrology of Agricultural Tile-Drained Watersheds

By: Golmar Golmohamadi

Shiv Prasher, Ali Madani, Ramesh Rudra, Mohamed Youssef

Bioresource Engineering Macdonald Campus Sainte-Anne-de-Bellevue

Outline

- Introduction
- Objectives
- o SWATDRAIN model
- Model evaluation
 - Completely tile-drained watershed
 - Partially tile-drained watershed
- Scenario analysis controlled drainage on watershed basis
- Conclusions

SWATDRAIN

o SWAT

- Surface flow
- Subsurface flow
- Water table depth

• Modified SWAT - includes tile drainage

- Hooghoudt and Kirkham approaches
 - Volume drained and WTD relationship
- o DRAINMOD
 - Subsurface flow
 - Surface runoff due to different land use practices

• DRAINMOD into SWAT – A WINNING PROPOSITION

Introduction

Objectives

• Overall goal:

- Modify SWAT to simulate hydrology and water quality of agricultural tile-drained watersheds
- Specific objectives:
 - SWATDRAIN incorporate DRAINMOD into SWAT
 - Evaluate SWATDRAIN for fully tile-drained and partially tiledrained watersheds
 - Apply SWATDRAIN to assess impact of controlled drainage systems on watershed hydrology

Objectives

SWAT 2014, Brazil, July 28-29

Incorporating DRAINMOD into SWAT

Bioresource Engineering Macdonald Campus Sainte-Anne-de-Bellevue

Overall Modeling Approach

DRAINMOD hydrology was fully incorporated into SWAT

Development of SWATDARIN

Update variables in SWAI using the computed values from DRAINMOD

End

Development of SWATDARIN

🐯 McGill

Development of SWATDARIN

🐯 McGill

Development of SWATDARIN

Algorithm	Tile drainage	Water table depth
SWATDRAIN	ITDRN=2, DRAINMOD \checkmark	IWTDN=2, DRAINMOD \checkmark
SWAT (Original)	ITDRN=0	IWTDN=0
SWAT (Modified)	ITDRN=1, incorporates Kirkham and Hooghoudt tile drainage equations	IWTDN=1, drainage volume converted into WTD using a variable water table factor

SWAT 2014, Brazil, July 28-29

Model Evaluation

Green Belt (fully tile-drained watershed) Canagagigue Creek (partially tile-drained watershed)

Bioresource Engineering Macdonald Campus Sainte-Anne-de-Bellevue

🐯 McGill

Evaluation of SWATDRAIN - Green Belt

- Area: 14 ha
- Topography
- Loam to silty clay
- Corn

Tile drainage systems
(laterals: 15 m apart and 1 m depth)

Daily Water Table Depth

Water Table Depth - Daily and Monthly

Calibration				Validation				
Index	SWAT	SWAT			SWAT	SWAT	SWATDRAIN	
Index	(original)	(Modified)	SWAIDKAIN	(c	original)	(Modified)		
R ²	0.44	0.57	0.72		0.00	0.13	0.77	
PBIAS	-21.20	-13.85	-3.75		9.22	40.26	2.90	
NSE	0.42	0.41	0.82		-0.15	0.18	0.72	

Daily WTD calibration and validation statistics comparing measured and simulated data

Monthly WTD calibration and validation statistics comparing measured and simulated data

	Calibration				Validation		
Index	SWAT	SWAT	SWATDRAIN		SWAT	SWAT	
Index	(Original)	(Modified)			(Original)	(Modified)	SWAIDRAIN
R ²	0.24	0.49	0.75		0.00	0.11	0.93
PBIAS	11.03	-18.92	11.59		14.58	47.77	0.11
NSE	0.48	0.35	0.92		-0.33	0.34	0.89

Evaluation of SWATDARIN - Green Belt

Daily Tile Drainage Outflow

Tile Drainage Outflow Statistics – Daily and Monthly

Calibration			Validation			
Index	SWAT	SWAT		SWAT	SWAT	
	(original)	(Modified)	SWAIDRAIN	(original)	(Modified)	SWAIDRAIN
R ²	0.35	0.44	0.78	0.19	0.32	0.74
PBIAS	3.53	14.15	18.23	0.21	-18.47	23.85
NSE	0.35	0.42	0.67	0.17	0.38	0.70

Daily tile flow calibration and validation statistics comparing measured and simulated data

Monthly tile flow calibration and validation statistics of the measured and simulated data

Calibration			Validation				
lucility.	SWAT	SWAT		SWAT	SWAT		
Index	(original)	(Modified)	SWAIDRAIN	(original)	(Modified)	SWAIDRAIN	
R ²	0.75	0.80	0.92	0.45	0.77	0.88	
PBIAS	12.34	1.44	9.61	-15.84	-15.04	17.26	
NSE	0.65	0.69	0.91	0.42	0.73	0.90	

Evaluation of SWATDARIN - Green Belt

Canagagigue Creek Watershed

- West Canagagigue Creek
- Area: 18 Km²
- Topography
- Land use: agriculture
- Soil: loam or clay loam
- Tile drainage systems (laterals: 20 m apart and 1m depth)

High: 465m

Low: 398m

1 Kilometers

Evaluation of SWATDARIN - Canagagigue

Streamflow

Index	Da	aily	Monthly		
muex	Calibration Validation 0		Calibration	Validation	
R ²	0.74	0.62	0.93	0.75	
PBIAS	1.60	17.90	7.30	18.60	
NSE	0.72	0.63	0.92	0.73	

SWAT 2014, Brazil, July 28-29

Application of SWATDRAIN

Simulate Effect of Controlled Drainage on Watershed hydrology

Bioresource Engineering Macdonald Campus Sainte-Anne-de-Bellevue

Controlled Drainage Scenario

- Fully tile-drained Green Belt watershed
- Growing season (June 15th to August 15th)
- Winter period (November ^{1st} to May 1st)

Controlled Drainage Impacts

Water Management Scenario – Controlled Drainage

Controlled Drainage Impacts

Effect of Controlled Drainage on Watershed Hydrology

Vear	Con	ventional	Controlled		
real	Tile flow (mm)	Surface runoff (mm)	Tile flow (mm)	Surface runoff (mm)	
2004	142.2	31.6	136.5	33.4	
2005	205.4	64.7	176.1	83.7	
2006	385.4	89.7	324.5	139.7	
2007	276.3	40.97	249.7	39.5	
Average	252.3	56.7	221.7	74.1	

Note: CNVL: conventional; CTRL: controlled; SurQ: surface runoff; TileQ: tile drainage

Water Management Scenario – Controlled Drainage

Conclusions

- SWATDRAIN fully incorporates DRAINMOD hydrology into SWAT in order to improve latter's capability to predict subsurface hydrology of agricultural tiledrained watersheds.
- The model appears to do a better prediction of drain outflows and water table dynamics on a watershed scale.
- The model works for both fully drained and partially drained watersheds.

Contributions to Knowledge

- SWATDRAIN can simulate controlled drainage scenario on a watershed scale.
- Implementing the controlled drainage strategy resulted in a reduction of the average annual drain outflow by 18%, while it increased the surface runoff in the order of 30%.
- Next step is to investigate how improved subsurface hydrology would affect chemical pollution on a watershed scale.

Thank You!