2014 International SWAT Conference Porto de Galinhas, Brazil

Hydrologic assessment in a Brazilian forest watershed using SWAT model

Nadia Bernardi Bonumá; C. W. Corseuil; C. G. Rossi; M. Kobiyama; P R. Zanin

MOTIVATION

The Iguaçu River basin (68,410 km²) is a important basin of Southern Brazil since it has the largest hydroelectric power generation capacity in Brazil.

The remainders of the Native Forest which formerly covered the plateau region of the Southern Brazil are now only 2% of its original area.

MOTIVATION

The original Araucaria (Subtropical Ombrophilous Forest) has been replaced by reforestation, agricultural activities and reservoir constructions in Santa Catarina State, Southern Brazil.

MOTIVATION

How the changes in **land use** (native forest, pine, agriculture and reservoirs operation) affect the **hydrological processes** in this region?

OBJECTIVES

The aim of the study was to estimate the **hydrological process** with the SWAT model for the **Rio Preto watershed**, located in the Northern Plateau of **Santa Catarina State**:

i.To assess the **water balance** simulated with SWAT model;

ii. Compare measured and simulated streamflow.

iii.To conduct model sensitivity analysis to selected parameters.

STUDY AREA

Alto Rio Negro (Upper Negro River) Watershed

- Santa Catarina and Parana States;
- Area: 3454 km²;
- Topography: hilly (Average altitude 910 m);
- Annual rainfall: 1700 mm

STUDY AREA

STUDY AREA

INPUT DATA

INPUT DATA

LAND USE:

Native Forest (~38%)

Source: Zanin, P.R

Climate data:

Station	Code	Name	Time period	Source	
Flow gage	65094500	Rio Preto	1976 - 2014	ANA	
Flow gage	65094500	Rio Preto	1976 - 2014	ANA	
Rain gage	2649055	Corredeira	1976 - 2014	ANA	
Weather	84	Rio	1000 - 2008	EPAGRI/CIRAM-	
		Negrinho	1990 - 2000	INMET	
Weather	1511	Rio	2008 - 2013	EPAGRI/CIRAM-	
		Negrinho	2000 - 2013	INMET	
Rain Gage		CVG	2008 - 2014	CVG	
Rain Gage		Caunal	2003 - 2014	CVG	
Reservoir - Water		Caupal	2002 2014	CVG	
level		Caunai	2003 - 2014		
Reservoir - Gate		Caunal	2003 - 2014	CVG	
Operation		Caunai	2003 - 2014		

Source: Zanin, P.R

METHODS

Water Balance:

Month	PREC	SURF Q	LAT Q	WY	ET	PET
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Jan	196	55.42	0.63	83.76	82.89	165.37
Feb	154.65	37.53	0.63	67.66	78.39	179.22
Mar	118.17	26.13	0.67	62.16	67.95	136.98
Apr	88.55	22.5	0.61	55.48	47.23	98.69
Mai	114.98	40.88	0.58	69.09	35.14	78.97
Jun	121.25	36.93	0.55	62.27	31.45	79.38
Jul	138.01	43.93	0.62	76.26	44.37	107.13
Ago	100.96	30	0.61	66.91	57.89	143.99
Sep	159.34	46.12	0.58	76.58	61.97	145.27
Oct	185.19	55.87	0.67	89.49	86.96	175.56
Nov	150.16	43.21	0.64	78.74	82.45	161.26
Dez	148.13	36.78	0.62	69.27	92.73	178.84
Mean	139.62	39.61	0.62	71.47	64.12	137.56

The results indicated that 46% of the annual PREC is lost by ET in the watershed

Baseflow separation:

The simulation indicated that the baseflow, which is an important component of total yield, is **54% of measured and** simulated runoff.

Measured and simulated streamflow

Flow Duration Curves (FDC)

The FDCs of measured and simulated – to evaluate the daily streamflow variability.

The FDC derived from the simulated hydrographs indicated an underestimation of the low flows by SWAT model.

Sensitivity analysis (LH)

- The CN2 parameter's variation had the highest sensitivity. Increased values of CN2 imply an increase in the surface runoff.
- The second parameter with the greatest effect was the soil evaporation compensation factor (ESCO). Kannan et al. (2007) noticed that a change in the value of the ESCO affects all the water balance components.
- The third most sensitive parameter was the threshold depth of water in the shallow aquifer required for return flow to occur (GWQMN).

CONCLUSIONS

Performance of the model:

 \diamond NASH = 0.63 and R² = 0.61 for monthly simulations.

Water Balance:

ET: 46% of the annual PREC is lost by ET in the watershed.

Section 3.1 Baseflow: The simulation indicated that the baseflow, which is an important component of total yield, is 54% of measured and simulated runoff.

FDC: Underestimation of the **low flows** by SWAT model.

Sensitivity Analysis:

♦ CN2, ESCO and GWQMN.

RECOMMENDATIONS

Substitution Section Sectio

Future work:

Data: include a longer period of time (more data) in order to improve the simulations;

Auto-calibration: SWAT-CUP;

Uncertainty analysis: of measured data (Harmel and Smith, 2007) and model parameters (SWAT-CUP);

Management scenarios: land use and climate changes.

ACKNOWLEDGEMENTS

Thank you for your attention! Obrigada pela atenção!

Nadia Bernardi Bonumá UFSC, Florianópolis, SC, Brazil. E-mail: <u>nadiabonuma@gmail.com</u> nadia.bonuma@ufsc.br