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a b s t r a c t

Previous publications have outlined recommended practices for hydrologic and water quality (H/WQ)
modeling, but limited guidance has been published on how to consider the project’s purpose or model’s
intended use, especially for the final stage of modeling applications e namely evaluation, interpretation,
and communication of model results. Such guidance is needed to more effectively evaluate and interpret
model performance and more accurately communicate that performance to decision-makers and other
modeling stakeholders. Thus, we formulated a methodology for evaluation, interpretation, and
communication of H/WQ model results. The recommended methodology focuses on interpretation and
communication of results, not on model development or initial calibration and validation, and as such it
applies to the modeling process following initial calibration. The methodology recommends the
following steps: 1) evaluate initial model performance; 2) evaluate outliers and extremes in observed
values and bias in predicted values; 3) estimate uncertainty in observed data and predicted values; 4) re-
evaluate model performance considering accuracy, precision, and hypothesis testing; 5) interpret model
results considering intended use; and 6) communicate model performance. A flowchart and tables were
developed to guide model interpretation, refinement, and proper application considering intended
model uses (i.e., Exploratory, Planning, and Regulatory/Legal). The methodology was designed to
enhance application of H/WQ models through conscientious evaluation, interpretation, and communi-
cation of model performance to decision-makers and other stakeholders; it is not meant to be a definitive
standard or a required protocol, but together with recent recommendations and published best practices
serve as guidelines for enhanced model application emphasizing the importance of the model’s intended
use.

Published by Elsevier Ltd.

1. Introduction

Hydrologic/water quality (H/WQ)models are commonly applied
for regulatory/legal, planning, and exploratory purposes, each of
which necessitates a different level of confidence in model output.
The standard by which models are judged may be quite high in
legal or regulatory applications for example, but a lesser standard is
likely acceptable in exploratory analyses or preliminary applica-
tions. Loague and Green (1991) stated that evaluation protocols are

q Position papers aim to synthesise some key aspect of the knowledge platform
for environmental modelling and software issues. The review process is twofold e a
normal external review process followed by extensive review by EMS Board
members. See the Editorial in Volume 21 (2006).
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needed for models used in environmental management, and ASCE
(1993) concluded that modeling publications generally lack
adequate discussion of model performance. Thus in recent years,
Refsgaard et al. (2005), Jakeman et al. (2006), Engel et al. (2007),
Moriasi et al. (2007), Biondi et al. (2012), Bennett et al. (2013),
Black et al. (2014), and others have recommended protocols for
some aspects of H/WQ modeling based on the need for formal
model development, application, and communication guidelines
rather than ad hoc approaches. Such formalized methodologies
were rightly deemed necessary because modeling applications
often have human health, regulatory, ecological, socio-economic,
and policy implications, which necessitate improved communica-
tion of modeling techniques, limitations, and performance.

While these previous publications outline recommended
modeling practices, additional guidance is needed to assist mod-
elers in considering the project’s purpose or model’s intended use
in the final stage of model applicationse evaluation, interpretation,
and communication of model results. Wagener et al. (2001) did
note the importance of first defining the modeling purpose and
considering the appropriate complexity needed in model devel-
opment with respect to performance and associated uncertainty.
Guidelines developed by Refsgaard et al. (2005) and Jakeman et al.
(2006) both begin with defining the modeling project purpose and
end with tailoring reporting to various types of users. Bennett et al.
(2013) established a comprehensive model evaluation method,
which briefly discusses communication with the user community
throughout modeling applications. Additionally, Augusiak et al.
(2014) reviewed the terminology used to describe model valida-
tion and evaluation and suggested that steps in model evaluation
should be separately recognized: data evaluation, conceptual
model evaluation, implementation verification, model output
verification, model analysis (including sensitivity analysis), and
model output corroboration (post hoc testing of predictions).
However, the authors stop short of model evaluation and
communication based on intended use and outcomes. Additional
guidance would enhance evaluation and interpretation of model
performance and assist modelers in more effectively communi-
cating performance to stakeholders (e.g., agricultural producers,
environmental organizations, elected officials, public interest
groups) as well as researchers, regulators, and local/state/federal
agencies.

The methodology focuses on interpretation and communication
of model results, which is the final stage of modeling applications,
not onmodel development and validation or initial calibration (e.g.,
objective function identification, sensitivity analysis, parameter
estimation techniques). This does not mean that these topics are
not important but that they are relatively well addressed in pub-
lished modeling literature and are not the focus of this manuscript.
In other words, the methodology applies to the modeling process
following initial calibration and addresses final model refinement,
evaluation, interpretation, and communication of model perfor-
mance for a specific model application. As such, selected model
post-development and refinement steps (e.g., outlier evaluation,
prediction bias, and uncertainty evaluation), which are not
commonly utilized, are emphasized. In addition, the recommen-
dations in this manuscript focus on deterministic model applica-
tions. Probabilistic applications, which are increasing in importance
as more regulations are being written with regard to risk rather
than discrete outcomes, would require different evaluation, inter-
pretation, and communication methods.

The recommendations were designed to expand guidance from
foundational work and “good modeling practice”manuscripts such
as Refsgaard et al. (2005), Jakeman et al. (2006), Engel et al. (2007),
Moriasi et al. (2007), Bennett et al. (2013), Black et al. (2014), and
others. Specifically, they were developed as recommendations that

contribute to improved modeling practice through conscientious
application of H/WQ models and enhanced evaluation, interpre-
tation, and communication of modeling results considering inten-
ded use.

2. Recommended methodology

Procedures within the following steps were developed from
existing literature and best professional judgment to guide post-
development model refinement, evaluation, interpretation, and
communication: 1) evaluate initial model performance; 2) evaluate
outliers and extremes in observed values and bias in predicted
values; 3) estimate uncertainty in observed data and predicted
values; 4) re-evaluate model performance considering accuracy,
precision, and hypothesis testing; 5) interpret model results
considering intended use; and 6) communicate model perfor-
mance. A flowchart outlining themethodology is presented in Fig.1,
and detailed information for each of the steps is presented subse-
quently. The recommended methodology is not meant to be pre-
scriptive but to present recently-developed “good modeling
practices” and emphasize existing ones, many of which are
commonly neglected.

Upon initiation of all modeling projects, it is critical to clearly
define the model’s intended use (Fig. 1). To present this topic and
discuss general cases of modeling applications, three categories of
intended model use were established: Exploratory, Planning, and
Regulatory/Legal. The Exploratory category includes modeling
projects inwhich initial or approximate comparisons or beta model
development is desired, and therefore, reduced confidence in pre-
dictions is acceptable. This category also includes models applied to
explore the implications of alternative conceptual models (hy-
potheses regarding system function), to integrate scientific process
studies (concretize a conceptual model), or to share knowledge
with stakeholders in a participatory process. The Planning category
includes modeling for planning purposes (e.g., urban development
and watershed planning), conservation implementation (e.g.,
management practice placement), and policy formulation (e.g.,
incentives for land conversion to biofuel production) in which
confidence in the model’s ability to capture scenario differences is
important, but very high accuracy and precision in model pre-
dictions is less critical. The Regulatory/Legal category includes
modeling projects with regulatory (e.g., violation of regulatory
standards), legal (e.g., lawsuits or criminal cases) and/or human
health (i.e., chronic or acute) implications in which very high con-
fidence in model predictions is essential from both accuracy and
precision standpoints. Although these intended use categories may
not be mutually exclusive nor cover the entire spectrum of
modeling applications, they represent general categories that
warrant differing expectations related to model performance.

2.1. Step 1. Evaluate initial model performance

A crucial step in evaluating and interpreting model results is
creating graphs to display model results and calculating goodness-
of-fit indicator values to quantify model performance in terms of
prediction accuracy (Fig. 1, Step 1a, 1b, 1c). The value of utilizing
multiple evaluation methods, including graphical techniques and
quantitative indicators to assess overall model performance, is
widely accepted (e.g., Willmott, 1981; Loague and Green, 1991;
ASCE, 1993; Legates and McCabe, 1999; Moriasi et al., 2007; Jain
and Sudheer, 2008; Harmel et al., 2010; Bennett et al., 2013).
Although utilization of multiple techniques requires additional
effort, it produces a more comprehensive evaluation of model
performance.
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2.1.1. Step 1a. Create graphs displaying observed and predicted
values

Graphical techniques assist the user in visualizing model results
relative to measured data, judging whether results make physical
sense and are plausible, and determining where/how to correct
model deficiencies. Graphs are needed in addition to goodness-of-
fit indicators, which when used alone can lead to erroneous con-
clusions (e.g., see Chambers et al., 1983). Four graphical techniques
are especially useful in assessing model goodness-of-fit: 1) time-

series plots, 2) scatter plots, 3) percent exceedance plots (cumula-
tive distribution plots), and 4) phase portraits (phase plots). Time-
series plots help illustrate how well models reproduce observed
temporal responses (e.g., in surface runoff, baseflow, constituent
flux, and groundwater interactions). McCuen et al. (2006) refers to
the measure of how well the time series is reproduced as time-
offset bias. Scatter plots (e.g., 1:1 plots or plots of residuals)
clearly show observed vs. predicted values, thus indicating poten-
tial systematic bias and obvious poor predictions. Percent

Fig. 1. Flowchart of steps in the methodology for hydrologic/water quality model evaluation, interpretation, and communication considering intended use.
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exceedance (or cumulative distribution) plots are valuable in
assessing the ability of models to predict typical and extreme
values and to reproduce the return periods of observed values. They
are also useful for evaluating how errors are propagated in time by
the simulation process. In some applications, box plots are a useful
alternative or supplement to percent exceedance plots, presenting
less information but in a more easily digested form. Phase plots are
useful in determining whether the model is reproducing observed
trajectories of change and can highlight regions of poor predictions.
Other plot types, including spatial representations of data and
predictions where spatial patterns are of primary importance, may
also be useful.

2.1.2. Step 1b. Compare summary statistics and calculate goodness-
of-fit indicator values

Comparison of summary statistics (i.e., measures of central
tendency and variability) of observed and predicted values is rec-
ommended as an initial assessment of overall model performance
because if these summary values are not similar then a good fit
along the time series is unlikely. Ideally at least one relative and at
least one absolute goodness-of-fit indicator should also be calcu-
lated to assess model performance (Legates and McCabe, 1999).
Taylor diagrams can be valuable for simultaneously comparing the
performance of different models using multiple statistics (Taylor,
2001). This recommendation balances adequate evaluation and
unnecessary complication (ASCE, 1993). Using multiple statistics
and goodness-of-fit indicators does increase the likelihood of
mixed interpretation of model performance; however, the benefits
of a more complete model evaluation outweigh the potential
disadvantages.

Two widely-used relative goodness-of-fit indicators are the
NasheSutcliffe coefficient of efficiency (ENS) and the index of
agreement (d). Both indicators, and subsequent modified versions
of each, are commonly applied although considerable discussion
continues related to the relative merits of each (e.g., Willmott et al.,
2011; Legates and McCabe, 2013).

The original ENS defined by Nash and Sutcliffe (1970) is a
dimensionless indicator that ranges from -N to 1. It is better suited
to evaluate model goodness-of-fit than the coefficient of determi-
nation (R2) because R2 is insensitive to additive and proportional
differences between model simulations and observations. Howev-
er, like R2, ENS can be sensitive to extreme values because it squares
the values of paired differences (Legates and McCabe, 1999), which
may or may not be desirable. The influence of extreme values is
diminished in a modified version that uses the absolute value of the
deviations, which when written in its baseline adjusted form (eq.
(1)) allows a better comparison to observed values, as recom-
mended by Garrick et al. (1978), Legates and McCabe (1999), and
Schaefli and Gupta (2007).

E01 ¼ 1:0�
PN

i¼1jOi � PijPN
i¼1

���Oi � O
0���

(1)

where E10 ¼ modified ENS, Oi ¼ observed data, Pi ¼ predicted data,
and O

0 ¼ baseline value of observed data against which model is to
be compared.

McCuen et al. (2006) conducted an in-depth evaluation of ENS
and concluded that it can be a reliable indicator but emphasized the
need for proper interpretation. Specifically, ENS can be sensitive to
sample size, outliers, and bias in magnitude and time-offset, and
failure to recognize its limitations may lead to rejection of a good
model solely because the ENS was misapplied. McCuen et al. (2006)
also provided a method for conducting hypothesis tests and
computing confidence intervals with the ENS. Along this line, Ritter

and Muñoz-Carpena (2013) recently presented a framework for
statistical interpretation of model performance designed to reduce
modeler subjectivity in performance evaluation. A key component
of the comprehensive procedure, which includes evaluation of the
effects of bias, outliers, and repeated data, is a new method of hy-
pothesis testing related to ENS threshold values.

The original index of agreement (d) developed by Willmott
(1981) is another dimensionless indicator designed not to be a
measure of correlation but of the degree to which a model’s pre-
dictions are error free. According to Legates andMcCabe (1999), d is
also better suited for model evaluation than R2, but it too is sensi-
tive to extreme values. In a manner similar to that of ENS, this
sensitivity is mitigated in a modified version of d1 (eq. (2)) that uses
the absolute value of the deviations instead of the squared de-
viations (Willmott et al., 1985, 2011). More recently, Willmott et al.
(2011) refined d1 so that it is bounded on the upper and lower ends,
as shown in equation (3).

d1 ¼ 1�
PN

i¼1jPi � OijPN
i¼1 ð��Pi � O

��þ ��Oi � O
��Þ (2)

dr ¼ 1�
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i¼1jPi�Oij
c
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i¼1
��Oi�O
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i¼1

jPi�Oij�c
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��Oi�O
��
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i¼1
��Oi�O
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jPi�Oij>c
XN

i¼1

��Oi�O
��

(3)

The root mean square error (RMSE, eq. (4)) and mean absolute
error (MAE, eq. (5)) are widely-used absolute error goodness-of-fit
indicators that describe differences in observed and predicted
values in the appropriate units (Legates and McCabe, 1999).
Although reporting values for at least one of these absolute in-
dicators is recommended, a comparison is also useful because the
degree to which RMSE is greater than MAE indicates the extent of
outliers (Legates and McCabe, 1999).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1

XN

i¼1

ðOi � PiÞ2
vuut (4)

MAE ¼ N�1
XN

i¼1

jOi � Pij (5)

In some applications, goodness-of-fit metrics are less relevant
than measures of categorical performance. Examples include pre-
diction of whether an out-of-bank flood event will occur, whether a
regulatorywater quality trigger level has been exceeded, andwhich
phytoplankton species is dominant in a water body at a given time.
Bennett et al. (2013) present a range of categorical performance
methods and discuss issues such as the relative weighting of pos-
itive and negative results (e.g., whether it is more important to
correctly predict the chance of an exceedance or to correctly predict
that the trigger will not be exceeded).

2.1.3. Step 1c. Complete initial evaluation of model performance
Historically, modelers have stopped at this step and used some

arbitrary decision criteria to support their model performance
conclusion. However, recently modelers have taken this a step
further and assigned “very good,” “good,” “satisfactory,” or “un-
satisfactory” model performance based on ratings developed by
Moriasi et al. (2007). These ratings are typically applied based on
ranges of ENS, but Moriasi et al. (2007) also presents ratings based
on % bias and RSR (RMSE to observations standard deviation ratio).

R.D. Harmel et al. / Environmental Modelling & Software 57 (2014) 40e51 43
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Alternatively, “acceptable” ranges of goodness-of-fit indicator
values that represent sufficient predictive capacity in the context of
the application can be useful in evaluating model performance.
These should ideally be determined prior to calibration based on
the modeling objectives.

Recent work by Ritter and Muñoz-Carpena (2013) provides an
objective criterion for the selection of ENS ranges for model per-
formance ratings based on model prediction error represented by
nt. This indicator nt represents the number of times that the stan-
dard deviation of observed data is greater than the model error
(RMSE), where a good model fit is represented by a model with
error that is relatively small compared to the observed data range
(high nt values). Because of the nonlinear relationship between ENS
and nt, small incremental values of ENS closer to 1 (perfect model fit)
translate into large improvements in model prediction. As a result,
in addition to the establishment of a lower threshold that defines
“unsatisfactory”model performance (i.e., ENS< 0.65, corresponding
to nt¼ 0.7), wholemultipliers of nt (w1nt, 2nt, 3nt) were established
for “acceptable” (0.65� ENS < 0.80), “good” (0.80� ENS < 0.90), and
“very good” (ENS � 0.90) model performance ratings.

2.2. Step 2. Evaluate outliers and extremes in observed values and
bias in predicted values

Whether or not the initial model evaluation (Step 1) indicates
acceptable performance in terms of model accuracy, evaluation of
observed values and potential bias may indicate the need for
further model refinement (Fig. 1, Step 2a, 2b, 2c, 2d). Use of a fre-
quency histogram is recommended to evaluate the presence of
outliers and extreme observed values, which can make the central
tendency and variability of the sample much larger or smaller than
that of the population.

2.2.1. Step 2a. Evaluate potential outliers
For observed values that are much larger or smaller than the rest

of the sample, it should be determined whether they are outliers
(unexplainable or unrealistic values outside the assumed popula-
tion) or extremes (realistic but very infrequent values). By this
definition, outliers either result from mistakes (e.g., measurement
or transcription error) or originate from another population;
therefore, they should be removed or the populations should be
analyzed separately. Removing outliers should produce more
representative summary statistics, improved goodness-of-fit indi-
cator values, and more realistic relationships with other variables.
Several statistical tests such as the DixoneThompson, Rosner, Chi-
square, Bofferoni, and Chauvenets outlier tests (McCuen, 2003)
have been developed to check for outliers; however, these tests
require an understanding of the probability distribution of the data.
Also, even when they are applicable, discretion should be used and
every effort made to identify why the observed value occurred and

thus confirm its determination as an outlier or an extreme value
(McCuen, 2003).

2.2.2. Step 2b. Determine whether to include extremes
Then, the modeler should identify extreme values and deter-

mine whether their inclusion is necessary to achieve project ob-
jectives based on the model’s intended use. Before removing any
extreme values, their importance within the hydro-climatic region
should be carefully considered. In flood peak prediction projects,
for example, extreme values are critical and should remain in the
data set. Bulletin 17B from the United States Water Resources
Council (1982) provides guidance in handling extremes when
determining flood flow frequency. On the other hand, removal of
extreme values may be justified in projects focused on average
conditions, and their removal will produce the same benefits as
removing outliers.

It should be noted that if extremes are included, their relevance
to the modeling objectives can be considered and used to weight
extreme values. If the extremes are not relevant to the modeling
objectives, then goodness-of-fit indicators that use absolute dif-
ferences or log-transformed absolute differences give less weight to
the extremes. Conversely, if the extremes are important, then
goodness-of-fit indicators that square or even cube the differences
give more weight to extremes.

2.2.3. Step 2c. Examine potential magnitude bias in predicted
values

Following identification and assessment of outliers and ex-
tremes in observed values, potential bias in predicted values should
be examined. There are two components of error in predicted
response variables: 1) systematic error, also known as bias; and 2)
nonsystematic error, also known as random error. Bias, in this
sense, is a measure of the difference in magnitude of a central
tendency (e.g., average, median) for predicted and observed
response variables at a particular time-step. Bias ðe) can be reported
as an average error (eq. (6)). Positive bias indicates over-prediction
in the magnitude of the response variable and negative bias in-
dicates under-prediction. The greater the value of e, the greater the
bias in the indicated direction.

e ¼ 1
n

Xn

i¼1

ðPi � OiÞ (6)

Model bias greatly influences ENS (McCuen et al., 2006), such
that bias in a predicted response variable will always reduce ENS
relative to unbiased prediction. McCuen et al. (2006) recommend
that both bias and relative bias (Rb) be reported along with ENS.
Relative bias is calculated as the ratio of e to the average value of the
observed random variable ðOÞ. McCuen et al. (2006) state that an
appropriate threshold for jRbj is 0.05 (i.e., jRbj > 0.05 may be
considered significant). However, a larger threshold may be war-
ranted in certain situations, such as for multi-site calibration or
when observed data are highly uncertain. Thus, when the threshold
for significance increases (e.g., jRbj > 0.10 or 0.20, depending on the
project’s intended purpose) model refinement and/or data re-
examination should be considered to reduce over- or under-
prediction resulting from prediction bias.

Plotting residual error as a function of Pi or Oi can reveal other
patterns of bias and provide insight into possible model structural
errors. Slope bias, for instance, occurs when low measured values
are under-predicted while high values are over-predicted, or vice-
versa. This systematic error may result in a low overall e but high
RMSE. Alternatively, the magnitude or variance of residuals may
increase or decrease with Oi: If such biases exist, the errors will not
likely be normally distributed; therefore, standard methods to

Fig. 2. Efficiogram with lag increments of 2 h from �6 to 10 h.
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calculate p values for indicators such as R2 can give misleading
results.

2.2.4. Step 2d. Examine potential time-offset bias in predicted
values

In addition to magnitude bias, time-offset errors can occur in
time-dependent models if related variables are not synchronized in
time (e.g., rainfall, runoff, and groundwater response), although in
some applications only the approximate timing of response needs
to be predicted. Time-offset errors are essentially biases on the time
scale and can affect ENS; the larger the offset, the greater the
decrease in ENS (McCuen et al., 2006). Thus, efficiograms (plot of ENS

vs. time lag) can be valuable in detecting time-offset bias. Simulated
time series can be lagged by some increment of Dt forward and
backward in time. The resulting ENS values comparing the lagged
simulated time series to the observed time series are plotted
against the lag times. The results show the time-offset at which ENS
improves compared to the no-lag condition. As an example, Fig. 2
shows the efficiogram resulting from lagging a time series in
2 h increments from �6 to 10 h. The results show an improvement
in the ENS from 0.32 to 0.90 when the time series is lagged by þ6 h,
which indicates that perhaps the model should be revised because
of a consistent time-offset. In this case, the observed data should
also be re-examined for potential time-offset biases due to issues

Table 1
Recommendations for model interpretation and refinement for Exploratory, Planning, and Regulatory/Legal uses when model accuracy is “High.”(a)

Interpretation: High measurement uncertainty(b) prevents 
definitive model accuracy conclusion, and high model 
uncertainty(c) further reduces confidence in predicted values.

Recommendations:
Appropriate for Exploratory uses.

May be appropriate for Planning uses, although high model 
uncertainty and high measurement uncertainty should be 
reported and considered in scenario analysis.  Consider 
collection of additional data with less uncertainty and/or 
refinement of model.

Inappropriate for Regulatory/Legal uses.  Collect additional 
data with less uncertainty.  Determine cause of high model 
uncertainty, and either refine model or select a more 
appropriate model.

Interpretation: High measurement uncertainty prevents 
definitive model accuracy conclusion.

Recommendations:
Appropriate for Exploratory uses.

May be appropriate for Planning uses, although high 
measurement uncertainty should be reported and considered in 
scenario analysis.  Consider collection of additional data with 
less uncertainty.

Inappropriate for Regulatory/Legal uses.  Collect additional 
data with less uncertainty.

Interpretation: In spite of high model accuracy, high model 
uncertainty reduces confidence in predicted values.

Recommendations:
Appropriate for Exploratory uses.

May be appropriate for Planning uses, although high model 
uncertainty should be reported and considered in scenario 
analysis.  Consider model refinement.

Inappropriate for Regulatory/Legal uses.  Determine cause of 
high model uncertainty, and either refine model or select a 
more appropriate model to decrease model uncertainty.

Interpretation: High precision and high accuracy provides 
confidence in predicted values.

Recommendations:
Appropriate for Exploratory, Planning, and Regulatory/Legal
uses.

(a) A general, qualitative model performance determination based on summary statistic 
comparisons, goodness-of-fit indicator values, and/or graphical comparisons supplemented with 
model performance ratings and hypothesis testing results.
(b) Uncertainty in observed values used in model calibration and validation.
(c) Uncertainty in predicted values (in essence, the precision of predicted values).  

Model accuracy Measurement uncertainty Model uncertainty

Low

High

Model accuracy Measurement uncertainty Model uncertainty

Low

High

Model accuracy Measurement uncertainty Model uncertainty

Low

High

Model accuracy Measurement uncertainty Model uncertainty

Low

High
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with sampling methodology. If the time-offset is not consistent, it
may be appropriate to compare measured and predicted daily
maximums, for example, rather than values at a particular point in
time, especially in applications in which only the approximate
timing of events is relevant. To complicate the analysis further, a
single predictive model can have both magnitude and time-offset
biases, both of which can contribute to low accuracy; however, a
single ENS value cannot identify which factor is the principal source
of the bias (McCuen et al., 2006).

2.3. Step 3. Estimate uncertainty in observed data and predicted
values

The value of uncertainty estimates for observed data used for
calibration/validation and in predicted values and communicating

that uncertainty to scientific, regulatory, policy, and public interests
is increasingly emphasized (e.g., Beck, 1987; Kavetski et al., 2002;
Reckhow, 2003; Beven, 2006; Muñoz-Carpena et al., 2006;
Shirmohammadi et al., 2006; Van Steenbergen et al., 2012).
(Fig. 1, Step 3a, 3b, 3c). Presenting uncertainty estimates for model
predictions and observed data enhances the ability of modelers and
decision-makers to assess and quantify confidence in the observed
and predicted values (Harmel et al., 2010).

2.3.1. Step 3a. Estimate uncertainty in observed values used for
calibration/validation

Estimating and reporting the uncertainty in observed data used
in calibration and validation is recommended because of its impact
on the evaluation and interpretation of model results. An uncer-
tainty estimation framework specifically for measured water

Table 2
Recommendations for model interpretation and refinement for Exploratory, Planning, and Regulatory/Legal uses when model accuracy is “Low.”(a)

Interpretation: High model uncertainty(c) and low accuracy
(even with high measurement uncertainty(b)) provide little 
confidence in predicted values.

Recommendations:
Inappropriate for Exploratory, Planning, and 
Regulatory/Legal uses.  Collect additional data with less 
uncertainty.  Determine cause of high model uncertainty and 
low model accuracy, and either refine model or select a more 
appropriate model.

Interpretation: Although model uncertainty is low, low 
model accuracy (even with high measurement uncertainty) 
reduces confidence in predicted values.

Recommendations:
May be appropriate for Exploratory uses; however, application 
of a model with low accuracy should be clearly presented and 
well justified.

Inappropriate for Planning and Regulatory/Legal uses.  
Collect additional data with less uncertainty.  Determine cause 
of low model accuracy, and either refine model or select a 
more appropriate model.

Interpretation: High model uncertainty and low accuracy 
provide little confidence in predicted values.

Recommendations:
Likely inappropriate for Exploratory uses; however, may be 
useful to highlight range of possible system behaviors and 
develop hypotheses.  Determine cause of high model 
uncertainty and low model accuracy, and either refine model 
or select a more appropriate model.

Inappropriate for Planning and Regulatory/Legal uses.  
Determine cause of high model uncertainty and low model 
accuracy, and either refine model or select a more appropriate 
model.

Interpretation: Although model uncertainty is low, low 
model accuracy reduces confidence in predicted values.

Recommendations:
May be appropriate for Exploratory uses; however, application 
of a model with low accuracy should be clearly presented and 
well justified.

Inappropriate for Planning and Regulatory/Legal uses.  
Determine cause of low model accuracy, and either refine 
model or select a more appropriate model.

(a) A general, qualitative model performance determination based on summary statistic 
comparisons, goodness-of-fit indicator values, and/or graphical comparisons supplemented with 
model performance ratings and hypothesis testing results.
(b) Uncertainty in observed values used in model calibration and validation.
(c) Uncertainty in predicted values (in essence, the precision of predicted values).

Model accuracy Measurement uncertainty Model uncertainty

Low

High

Model accuracy Measurement uncertainty Model uncertainty

Low

High

Model accuracy Measurement uncertainty Model uncertainty

Low

High

Model accuracy Measurement uncertainty Model uncertainty

Low

High
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quality data was recently established (Harmel et al., 2006) and
modified into a more user-friendly software format (Harmel et al.,
2009). Both the software and its framework-basis use RMSE prop-
agation to estimate uncertainty for data collection procedural cat-
egories (discharge measurement, sample collection, sample
preservation/storage, laboratory analysis, and data processing and
management) and for resulting discharge, concentration, and load
values. The only known similar work is that of Montgomery and
Sanders (1986). Research by Harmel et al. (2006, 2009) and
others (e.g., Ramsey, 1998) has indicated that substantial error can
be introduced by each procedural category, especially sample
collection, although most standard methods focus on sample
preservation/storage and laboratory analysis.

2.3.2. Step 3b. Estimate uncertainty in predicted values
Model uncertainty (excluding components related to measure-

ment uncertainty) may be attributed to parameterization (param-
eter uncertainty), algorithm selection and ability to represent
natural processes, and natural process variability based on tem-
poral and spatial scales (Vicens et al., 1975; Beven, 1989; Haan,

1989). The methodology presented here does not address alterna-
tives for model uncertainty estimation [e.g., first-order approxi-
mation (Haan, 2002), Monte Carlo simulation (Haan et al., 1995),
Bayesian methods (e.g., Jin et al., 2010) and generalized likelihood
uncertainty estimation (GLUE, Beven and Freer, 2001)] but instead
focuses on the importance of estimating model uncertainty
because of its policy, regulatory, and management implications
(Shirmohammadi et al., 2006). When these techniques are not
viable for a specific application, a qualitative assessment of model
uncertainty is likely appropriate. For example, the modeler can
reasonably assume the model uncertainty is low if the model al-
gorithms reasonably represent natural processes, if the input and
calibration/validation data sets are extensive and have low mea-
surement uncertainty, and if parameter values are realistic.

The model interpretation and refinement recommendations for
various model uses rely on qualitative groupings of model uncer-
tainty (Tables 1 and 2). It can be argued that these qualitative
groupings are preferable to quantitative thresholds because of the
inability of current techniques to adequately consider numerous
dependent model processes and thus make definitive uncertainty
estimates for complex, distributed models. However, whether
quantitative or qualitative techniques are used, the process of
estimating uncertainty in predicted values produces an estimation
of model precision, which should be considered in determination of
model appropriateness for a specific application.

For certain Exploratory and Planning applications in which
scenarios take the model beyond the bounds of the calibration and
validation data, statistical measures may not be sufficient to char-
acterize model uncertainty. A common example is model applica-
tion to simulate hydrologic impacts in long-term climate change
scenarios, in which temperatures and weather events are more
extreme than those in the calibration/validation data sets. For such
extrapolative prediction, greater weight should be given to obser-
vational data or time-periods that more closely resemble expected
scenarios. In addition, the model should be investigated for struc-
tural relevance: Does the model rely on submodels that may not be
valid in the extrapolated conditions? For example, were tempera-
ture and evaporation relationships established for a limited tem-
perature and humidity range? Were sediment yield relationships
developed assuming continuation of current land use, cropping
patterns, and/or storm intensities?

Fig. 3. Measured and predicted daily streamflow example (adapted from Harmel et al.,
2010). The uncertainty boundaries (Cv ¼ 0.192) are presented as the shaded area for
measured streamflow and as the upper and lower boundary lines (Cv ¼ 0.192) for
predicted streamflow.

Fig. 4. Example FITEVAL output.
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2.3.3. Step 3c. Report estimated uncertainty in observed and
predicted values

For both predicted and observed data sets, the uncertainty
should be estimated for individual values (although it is possible
that the same uncertaintymay apply to each value in the set). These
estimates are needed in Step 4 to modify goodness-of-fit indicator
values considering both measurement and model uncertainty by
the method of Harmel et al. (2010), which uses the coefficient of
variation (Cv) to report uncertainty as did Haan et al. (1995). In
contrast, Harmel et al. (2006, 2009) present uncertainty estimates
for individual values as �% uncertainty, while others have used the
standard deviation.

The example in Fig. 3 illustrates the benefits of presenting un-
certainty estimates for corresponding calibration/validation data
and predicted values. As is clearly evident in Fig. 3, themodel does a
poor job of simulating hydrograph recession following high peak
flow events. By estimating the uncertainty for measured and pre-
dicted values and presenting them graphically, the regions of good
and poormodel fit and the influence of uncertainty can be observed
more clearly than in simple time series comparisons.

2.4. Step 4. Re-evaluate model performance considering accuracy,
precision, and hypothesis testing

Complete model evaluation requires both operational exami-
nation of the accuracy (Step 1) and precision (Step 3b) of predicted
values and examination of whether the model is scientifically and
conceptually valid (Willmott et al., 1985; Loague and Green, 1991)
and whether it uses currently accepted modeling practices such
that the conceptual and algorithmic basis of the model is correct. A
model is a good representation of reality only if it can be used to
predict, within a calibrated and validated range, an observable
phenomenon with acceptable accuracy and precision (Loague and
Green, 1991). Thus, model performance should be re-evaluated
(Fig. 1, Step 4) once outliers and extreme values in observed data
used for calibration/validation are considered (Step 2), potential
bias in predicted values is addressed (Step 2), and uncertainty in
observed and predicted values is estimated (Step 3).

The same graphical techniques, summary statistics, and
goodness-of-fit indicators described in Step 1 can be used. In
addition, the method of Harmel et al. (2010) can be used to produce
correction factors for the traditional error term (Oi � Pi) in
goodness-of-fit calculations and thus modify indicator values ac-
counting for measurement and model uncertainty. This method is
based on Haan et al. (1995), who state that the degree of overlap
between corresponding probability density functions for observed
and predicted values is indicative of model predictive ability.

Cibin et al. (2011) proposed another goodness-of-fit evaluation
method, similar to that of Harmel and Smith (2007), which can be
used tomodify ENS considering prediction uncertainty. This method
also applies when “measured” values are estimated or assumed,
which is relatively common when no continuous or daily water
quality data are available because of periodic weekly or monthly
sampling. In this case regression models, such as LOADEST (Runkel
et al., 2004), can be used to convert periodic measurements into
more frequent or continuous data for calibration and validation;
however, the uncertainty introduced should be carefully consid-
ered and clearly reported.

Interpretation of ENS values is often subjective and may be
biased by the magnitude and number of observed data points as
well as outliers and repeated data. Thus, Ritter and Muñoz-Carpena
(2013) proposed hypothesis testing of model goodness-of-fit in-
dicators and developed a statistically-based framework to accept or
reject model performance. The procedure assesses the significance
of indicator values based on approximated probability distributions

for two common indicators (ENS and RMSE) and does not assume
normality. The distributions are derived with bootstrapping (block
bootstrapping when dealing with time series), which is a method of
approximating unknown underlying distributions of any shape for
the goodness-of-fit indicators, followed by bias corrected and
accelerated calculation of confidence intervals. Once the approxi-
mate probability distribution is known, the statistical significance
of model goodness-of-fit can be evaluated. For example, the null
hypothesis (H0) represents that the median ENS is less than the
threshold ENS value below which the goodness of fit is not
acceptable (ENS < 0.65) and the alternative hypothesis (H1) when it
is acceptable (ENS � 0.65). The null hypothesis is rejected, and the
result (i.e., acceptable goodness-of-fit) is statistically significant
when the p-value is less than the significance level a. The p-value
represents the probability of wrongly accepting the fit (ENS � 0.65)
when it should be rejected (i.e., when H0 is true). The choice of a
should be based on the modeling project and its intended purpose
(i.e., how strong the evidence needs to be for accepting or rejecting
H0). As a starting point, Ritter and Muñoz-Carpena (2013) suggest
adopting the least restrictive significance level of a¼ 0.10; however,
it might be more appropriate to lower the significance level to
a ¼ 0.05 or 0.01 when substantial uncertainty is present in
observed values or for model applications with Planning and
certainly Regulatory/Legal purposes. This hypothesis testing pro-
cedure together with calculation of graphical and goodness-of-fit
indicator values, outliers, and bias can be easily performed using
the software FITEVAL (see Fig. 4) (Ritter andMuñoz-Carpena, 2013).

These modified indicator values, along with model performance
ratings (Moriasi et al., 2007), provide valuable supplemental in-
formation designed to be used in conjunction with (not instead of)
traditionally-applied indicators. All of these methods applied and
considered together provide a detailed overview of model
performance.

2.5. Step 5. Interpret model results considering intended use

As stated by Loague and Green (1991), the intended use of the
model should determine the strictness of criteria used to determine
acceptance during model performance evaluation (Fig. 1, Step 5).
Thus, model interpretation and recommendation guidelines were
developed for three categories of intended use: Exploratory,
Planning, and Regulatory/Legal (Tables 1 and 2). At this stage in
the methodology, uncertainty in observed data used in calibration/
validation and in model predictions will have been determined
(Step 3) and model accuracy will have been evaluated (Step 4), so
these factors can guide model interpretation and refinement for
each of the intended uses. In Tables 1 and 2, recommendations are
given for each intended model use for each of the eight combina-
tions of High/Low model accuracy, High/Low measurement un-
certainty, and High/Low model uncertainty. Model accuracy is a
general, qualitative model performance determination based on
summary statistic comparisons, goodness-of-fit indicator values,
and/or graphical comparisons supplemented with model perfor-
mance ratings (Moriasi et al., 2007) and hypothesis testing results
(Ritter and Muñoz-Carpena, 2013). Measurement uncertainty is the
uncertainty in observed values used in model calibration and
validation. Model uncertainty is the uncertainty in predicted values
(in essence, the precision of predicted values).

2.6. Step 6. Communicate model performance

After completing Steps 1e5, the key aspects of these steps need
to be presented in a format appropriate to the project’s intended
audience, and at a level of detail and complexity that the audience
can comprehend (Fig. 1, Step 6). It is not practical to reproduce

R.D. Harmel et al. / Environmental Modelling & Software 57 (2014) 40e5148



Author's personal copy

every detail from each of these steps; thus, the information pre-
sented depends to some degree on the audience, the findings, and
the intended use of the H/WQ model. The objective of communi-
cating the results of Steps 1e5 should be to clearly demonstrate the
rationale and approach used to evaluate and refine the model.

2.6.1. Step 1. Communication (Evaluate initial model performance)
The need for and benefits of extensive reporting and commu-

nication of results in this step are limited in many modeling ap-
plications because it serves as an initial evaluation of model
performance; however, there are circumstances when these initial
findings might be of interest. For example, graphs identifying a
clear pattern, such as under-prediction of flow peaks, would be
important in flood prediction projects. Once outliers and extremes
in observed values and bias in predicted values are evaluated and
possibly removed (Step 2) and uncertainty in observed data used
for calibration/validation and in predicted values is estimated (Step
3), model performance will be re-evaluated in Step 4.

2.6.2. Step 2. Communication (Evaluate outliers and extremes in
observed values and bias in predicted values)

Results of this step should be clearly communicated to provide
the audience insight into the observed calibration and validation
data and model behavior, which is needed for understanding and
interpreting results. For example, plots or Rb values showing sub-
stantial bias in model results inform the audience and provide di-
rection and rationale for model refinement. In addition, data or
model modifications to reduce or remove the influences of outliers
and extreme values in observed data and magnitude and time-
offset bias in predicted values should be clearly reported. Specif-
ically, the assumptions used to systematically account for these
influences should be defined and presented.

2.6.3. Step 3. Communication (Estimate uncertainty in observed
data and predicted values)

This step focuses on uncertainty analyses of observed data and
predicted values, which must be clearly communicated to the
audience because modeling results are often used tomake strategic
decisions with economic, ecological, and health and safety impli-
cations. Kloprogge et al. (2007) contains detailed guidance on the
communication of uncertainty to non-technical audiences, and
therefore, is a valuable reference. It provides a general introduction
to the issue of communicating uncertainty information; it assists
writers in meeting the audience’s information needs and in
reflecting on anticipated uses and possible impacts of the uncer-
tainty information; and it contains practical information on how to
communicate uncertainties.

Uncertainty should be explainedwith careful consideration of the
audience’s level of understanding, but an audience unfamiliar with
uncertainty should not be used as a reason not to communicate un-
certainty (Pappenberger and Beven, 2006). In most situations, pre-
senting numerous equations is not beneficial. Instead, presenting the
range of probable predicted outcomes and the inherent uncertainty
in observed data is recommended to enhance communication of
model results (e.g., Fig. 3). Clear presentation of the uncertainty
associated with modeling projects will facilitate more appropriate
model applications, better understanding and interpretation of
model results, and enhanced implementation of actions and pro-
grams based on model results (Van Steenbergen et al., 2012).

Communication of uncertainty has received considerable
attention in the last decade in climate modeling (e.g., Patt and
Dessai, 2005; Budescu et al., 2012; Lorenz et al., 2013) and clinical
health research (e.g., Politi et al., 2011; Han, 2013); H/WQmodelers
can benefit from this work. For example, Budescu et al., 2012 found
that redundant presentation of uncertainty information

(presentation of the same information in both descriptive and
numerical terms) can facilitate understanding. Additionally, mod-
elers should be aware that qualitative descriptions of uncertainty
(e.g., “high”, “medium” and “low”) and even standard probability
statistics will be interpreted very differently by different stake-
holders, and this will affect (and be affected by) interpretation of
and trust in modelers and model results (Budescu et al., 2012).

2.6.4. Step 4. Communication (Re-evaluate model performance
considering accuracy, precision, and hypothesis testing)

This step updates the initial evaluation of model performance
(Step 1) and generally produces a large number of graphs and
statistics for modelers to interpret results and evaluate model
performance. Stakeholders will likely not be interested in seeing all
of these graphs along with detailed discussion with numerous
goodness-of-fit indicators but will instead benefit from summary
information and example plots related to model performance.

Ideally, evaluation of model performance should include sum-
mary or example graphs, summary statistic comparisons, at least
one relative goodness-of-fit indicator (e.g., E10 and/or d1 or dr), at
least one absolute goodness-of-fit indicator (e.g., RSME and/or
MAE), and one goodness-of-fit indicator modified to account for
uncertainty (e.g., Harmel et al., 2010). Presenting goodness-of-fit
indicator values for both calibration and validation periods along
with the simulation duration (e.g., event, continuous), simulation
time-step (e.g., daily, monthly), spatial scale (e.g. field, small
watershed, basin), and data type (e.g., flow volume, sediment load)
along with a brief discussion of any data or model abnormalities is
recommended. In conjunction with graphs and indicator values,
model performance ratings such as developed by Moriasi et al.
(2007) are useful to qualify performance as “good,” “satisfactory,”
“unsatisfactory,” etc. Lastly, the hypothesis testing methodology of
Ritter and Muñoz-Carpena (2013) provides an indication of the
statistical significance of model predictions and provides a proba-
bility of the following model performance ratings: “unsatisfactory”
(ENS < 0.65), “acceptable” (0.65 � ENS < 0.80), “good”
(0.80 � ENS < 0.90), and “very good” (ENS � 0.90).

2.6.5. Step 5. Communication (Interpret model results considering
intended use)

In addition to graphs and indicator values, which have histori-
cally been used to assign some arbitrary judgment related to model
performance, other important aspects of model performance (e.g.,
model performance ratings, hypothesis testing, and estimates of
uncertainty in observed data used for calibration/validation and
model output) are now recommended as good modeling practices.
In addition, according to Wagener et al. (2001), Refsgaard et al.
(2005), and Jakeman et al. (2006), the intended model use should
be considered when interpreting model results and presenting
relevant limitations. Tables 1 and 2 were developed by expanding
the model evaluation matrix in Harmel et al. (2010) to facilitate
consideration of intended model use (i.e., Regulatory/Legal, Plan-
ning, and Exploratory).

In addition, the spatial variability, spatial scale, system
complexity, available data, and parameter uncertainty should be
considered when interpreting and communicating model perfor-
mance (Loague and Green, 1991). In all steps, but especially in this
final one, accurate, straight-forward communication of model
performance avoiding technical jargon is critical but too often not
achieved.

3. Summary and conclusions

The methodology for evaluation, interpretation, and commu-
nication for H/WQ model performance was formulated to assist
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modelers in more effectively evaluating and interpreting model
performance and more accurately communicating that perfor-
mance to stakeholders and decision-makers while considering the
model’s intended use. The methodology focuses on interpretation
and communication of model results, not onmodel development or
initial calibration and validation. Rather themethodology applies to
model application following initial calibration and addressesmodel
refinement, evaluation, interpretation, and communication. The
methodology includes steps for evaluating initial model perfor-
mance; evaluating outliers and extremes in observed values and
bias in predicted values; estimating uncertainty in observed data
and predicted values; re-evaluating model performance consid-
ering accuracy, precision, and hypothesis testing; interpreting
model results considering intended model use; and communi-
cating model performance.

In addition, a flowchart and user-friendly tables were developed
to guide model interpretation, refinement, and proper application
considering intended model uses (i.e., Regulatory/Legal includes
modeling projects with regulatory, legal, and/or human health
implications; Planning includes modeling for planning purposes,
conservation implementation, and policy formulation; and
Exploratory includes modeling projects in which initial or
approximate comparisons or beta model development is desired).
These various intended uses necessitate different levels of confi-
dence in model results; thus, intended model use should be
considered when determining the standard by which models are
judged. For instance, when high measurement uncertainty pre-
vents a definitive model accuracy conclusion and high model un-
certainty further reduces confidence in predicted values, modeling
results are likely inappropriate for Regulatory/Legal purposes but
may be appropriate for Planning and Exploratory purposes. In
contrast, when high model precision and accuracy along with low
measurement uncertainty provides considerable confidence in
predicted values, modeling results are likely appropriate for Reg-
ulatory/Legal, Planning, and Exploratory purposes. This manu-
script provides substantive interpretation and communication
guidance that considers the intended use for H/WQ modeling,
which to date has received limited attention in the literature. The
methodologywas designed to serve as recommended guidance and
contribute to “good modeling practices.” It is not meant to be a
definitive standard or required methodology but to contribute to
enhanced model application emphasizing the importance of the
model’s intended use. The goal of continued “good modeling
practice” development is to improve modeling methodology and
application of H/WQ models through enhanced evaluation and
interpretation of model performance as well as enhanced
communication of that performance to decision-makers and other
modeling stakeholders.
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