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Abstract 

The difficulties involved in calibrating conceptual watershed models have, in the past, been 
partly attributable to the lack of  robust optimization tools. Recently, a global optimization 
method known as the SCE-UA (shuffled complex evolution method developed at The Uni- 
versity of  Arizona) has shown promise as an effective and efficient optimization technique for 
calibrating watershed models. Experience with the method has indicated that the effectiveness 
and efficiency of  the algorithm are influenced by the choice of the algorithmic parameters. This 
paper first reviews the essential concepts of the SCE-UA method and then presents the results 
of several experimental studies in which the National Weather Service river forecast system- 
soil moisture accounting (NWSRFS-SMA) model, used by the National Weather Service for 
river and flood forecasting, was calibrated using different algorithmic parameter setups. On the 
basis of these results, the recommended values for the algorithmic parameters are given. These 
values should also help to provide guidelines for other users of the SCE-UA method. 

1. Introduction 

Computer-based hydrologic models have become popular with practicing 
hydrologists and water resources engineers for performing hydrologic forecasts and 
for managing water systems. One type of computer model which is often used is the 
conceptual watershed model. Such models predict the magnitude of streamflows 
generated by a precipitation event by simulating the physical processes influencing 
the movement of water over and through the soil. The accuracy of these predictions 
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depends on how well the model structure is defined and how the model parameters are 
determined. Conceptual models generally have a large number of parameters which 
are not directly measurable and must therefore be estimated through model calibra- 
tion, i.e. by fitting the simulated outputs of the model to the observed outputs of the 
watershed by adjusting the model parameters. A measure of the fit between the 
simulated and observed outputs is called a calibration criterion or objective func- 
tion. The goal of calibration is to find those values for the model parameters that 
minimize (or maximize, if appropriate) the specified calibration criterion. 

Despite the usefulness and popularity of conceptual watershed models, their 
performance has not always been acceptable because of uncertainty in the model 
parameter estimates. For example, Johnston and Pilgrim (1976) tried unsuccessfully 
for over 2 years to find a unique set of parameters for the Boughton model. The 
National Weather Service (NWS), which is responsible for providing river and flood 
forecasts for more than 3000 river basins throughout the USA, has expressed similar 
concerns with the hydrologic models within the NWS river forecast system 
(NWSRFS). As pointed out by Brazil and Hudlow (1980): 'One of the most difficult 
problems faced is the calibration of the models within NWSRFS for various parts of 
the country'. 

During the last two decades, a great many studies on issues relating to conceptual 
model calibration have been published (e.g. Ibbitt, 1972; Johnston and Pilgrim, 1976; 
Sorooshian and Dracup, 1980; Restrepo-Posada, 1982; Kuczera, 1983a,b; Gupta and 
Sorooshian, 1983; Sorooshian and Gupta, 1983, 1985; Sorooshian et al., 1983; 
Troutman, 1985a,b; Duan et al., 1988). Although these efforts have helped to 
increase our understanding of the nature of the calibration problems, only limited 
success in alleviating the severity of the difficulties has been achieved (Sorooshian et 
al., 1983; Ibbitt and Hutchinson, 1984). Recently, Duan et al. (1992) conducted a 
detailed study of a simple six-parameter conceptual model (SIXPAR) using synthetic 
data to identify clearly the nature of the difficulties encountered in conceptual model 
calibration. The study found that, despite the simple model structure and the absence 
of model structural error or input data error, the parameter estimation problems are 
not trivial. Duan et al. summarized these problems as a list of five features 
(see Table 1). 

The primary conclusion of the Duan et al. (1992) study was that the optimization 
techniques employed for parameter estimation are not powerful enough to deal with 
the response surface conditions encountered in model calibration. The calibration 

Table 1 
Summary of the five major characteristics complicating the optimization problem in CRR model calibra- 
tion 

1. Regions of attraction More than one main convergence region 
2. Minor local optima Many small 'pits' in each region 
3. Roughness Rough response surface with discontinuous derivatives 
4. Sensitivity Poor and varying sensitivity of response surface in region of optimum 

and non-linear parameter interaction 
5. Shape Non-convex response surface with long curved ridges 
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techniques commonly used rely on direct-search optimization algorithms such as the 
Simplex method of Nelder and Mead (1965) and the pattern search method of Hooke 
and Jeeves (1961) (see, e.g. Johnston and Pilgrim, 1976; Pickup, 1977; Hendrickson 
et al., 1988). These algorithms are designed to solve single-optimum problems and are 
not able to deal effectively with all of the problems listed in Table 1. Experienced 
hydrologists typically cope with the inadequacy of these optimization methods by 
use of a manual calibration stage; the optimization algorithms are only used for 
fine-tuning of selected parameters. However, manual calibration requires detailed 
understanding of the model, which can only be obtained through many years of 
calibration experience. Furthermore, it can be very tedious and time-consuming 
(Baffaut and Delleur, 1989). Recently, researchers have been exploring ways to 
incorporate 'expert knowledge' of conceptual watershed models into the automatic 
calibration procedures (Baffaut and Delleur, 1989; Wheater et al., 1989; Harlin, 
1991). These schemes are highly model dependent and are difficult to generalize to 
other models. 

In recent years, many researchers have begun to investigate the use of globally 
based optimization methods for model calibration. Brazil (1988) investigated the 
use of the adaptive random search (ARS) method (Pronzato et al., 1984) to calibrate 
the soil moisture accounting model of the NWSRFS (NWSRFS-SMA), and reported 
that the ARS method was capable of producing promising results when used as part 
of a multi-level calibration strategy. Wang (1991) reported that the genetic algorithm 
(Holland, 1975), with fine-tuning by a local search method, can provide an efficient 
and robust means for calibration of the Xinanjiang watershed model. 

Duan et al. (1992, 1993) presented a new global optimization method known as the 
SCE-UA method (abbreviation for shuffled complex evolution method developed at 
The University of Arizona). This method is based on a synthesis of the best features 
from several existing methods, including the genetic algorithm, and introduces the 
new concept of complex shuffling. The method was designed specifically for the 
purpose of dealing with the peculiar problems encountered in conceptual watershed 
model calibration. Extensive testing on a simplified research version of the NWSRFS- 
SMA model (i.e. the SIXPAR model) and the full-scale NWSRFS-SMA model 
revealed that the SCE-UA method was both effective and efficient, compared with 
other existing global methods, including the ARS method and the multistart Simplex 
method (Duan et al., 1992; Sorooshian et al., 1993). 

2. Scope of this paper 

In the above-mentioned studies, it was found that the effectiveness and efficiency of 
the SCE-UA method are sensitive to the choice of algorithmic parameters (Duan et 
al., 1992, 1993). This paper presents a review of the essential concepts of the SCE-UA 
method and the results of a study conducted to establish guidelines on how to choose 
the algorithmic parameters of this method according to the degree of difficulty of the 
calibration problem. 
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3. The SCE-UA method 

3.1. Desirable properties of a global optimization method 

The five features listed in Table 1 that characterize the problems encountered in 
conceptual watershed model calibration are typical of many optimization problems 
faced by workers in various fields. An optimization algorithm that aims to deal with 
them must possess the following properties: (1) global convergence in the presence of 
multiple regions of attraction; (2) ability to avoid being trapped by small pits and 
bumps on the objective function surface; (3) robustness in the presence of differing 
parameter sensitivities and parameter interdependence; (4) non-reliance on the avail- 
ability of an explicit expression for the objective function or the derivatives; (5) 
capability of handling high-parameter dimensionality. 

3.2. Description of the SCE-UA method 

The SCE-UA method embodies the desirable properties described above and is 
specifically designed to deal with the peculiarities encountered in conceptual 
watershed model calibration. The method is based on a synthesis of four concepts: 
(1) combination of deterministic and probabilistic approaches; (2) systematic evolu- 
tion of a 'complex' of points spanning the parameter space, in the direction of global 
improvement; (3) competitive evolution; (4) complex shuffling. The first three con- 
cepts are drawn from existing approaches that have been proven successful in the past 
(Holland, 1975; Price, 1978, 1983; Manetsch, 1990; Wang, 1991), and the last concept 
was recently introduced (Duan et al., 1992, 1993; Sorooshian et al., 1993). The 
synthesis of these elements makes the SCE-UA method effective and robust, and 
also flexible and efficient. A general description of the steps of the SCE-UA method 
is given below (a more detailed presentation of the theory underlying the SCE-UA 
algorithm has been given by Duan et al. (1992, 1993)): 

(1) Generate sample--sample s points randomly in the feasible parameter 
space and compute the criterion value at each point. In the absence of prior informa- 
tion on the approximate location of the global optimum, use a uniform probability 
distribution to generate a sample. 

(2) Rank points--sort the s points in order of increasing criterion value so that the 
first point represents the smallest criterion value and the last point represents the 
largest criterion value (assuming that the goal is to minimize the criterion value). 

(3) Partition into complexes--partition the s points into p complexes, each contain- 
ing m points. The complexes are partitioned such that the first complex contains every 
p(k - 1) + 1 ranked point, the second complex contains every p(k - 1) + 2 ranked 
point, and so on, where k = 1,2 . . . . .  m. 

(4) Evolve each complex--evolve each complex according to the competitive 
complex evolution (CCE) algorithm (which is elaborated below). 

(5) Shuffle complexes--combine the points in the evolved complexes into a single 
sample population; sort the sample population in order of increasing criterion value; 
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shuffle (i.e. re-partition) the sample population into p complexes according to the 
procedure specified in Step 3. 

(6) Check convergence--if any of the pre-specified convergence criteria are 
satisfied, stop; otherwise, continue. 

(7) Check the reduction in the number of complexes--if the minimum number of 
complexes required in the population, Pmin, is less than p, remove the complex with the 
lowest ranked points; set p = p - 1 and s = pro; return to Step 4. IfPmin = p, return to 
Step 4. (It should be noted that this step is a new feature and is added to the version 
presented by Duan et al. (1992, 1993).) 

The initial random sampling of the parameter space provides the potential for 
locating the global optimum without being biased by pre-specified starting points. 
The partition of the population into several communities facilitates a freer and more 
extensive exploration of the feasible space in different directions, thereby allowing for 
the possibility that the problem has more than one region of attraction. The shuffling 
of communities enhances the survivability by a sharing of the information (about the 
search space) gained independently by each community. 

One key component of the SCE-UA method is the CCE algorithm, as mentioned in 
Step 4. This algorithm, based on the Nelder and Mead (1965) Simplex downhill search 
scheme, is presented briefly as follows: 

(I) Construct a subcomplex by randomly selecting q points from the complex 
(community) according to a trapezoidal probability distribution. The probability 
distribution is specified such that the best point (i.e. the point with the best function 
value) has the highest chance of being chosen to form the subcomplex, and the worst 
point has the least chance. 

(II) Identify the worst point of the subcomplex and compute the centroid of the 
subcomplex without including the worst point. 

(III) Attempt a reflection step by reflecting the worst point through the centroid. If 
the newly generated point is within the feasible space, go to Step IV; otherwise, 
randomly generate a point within the feasible space and go to Step VI. 

(IV) If the newly generated point is better than the worst point, replace the worst 
point by the new point. Go to Step VII. Otherwise, go to Step V. 

(V) Attempt a contraction step by computing a point halfway between the centroid 
and the worst point. If the contraction point is better than the worst point, replace the 
worst point by the contraction point and go to Step VII. Otherwise, go to Step VI. 

(VI) Randomly generate a point within the feasible space. Replace the worst point 
by the randomly generated point. 

(VII) Repeat Steps II-VI a times, where a/> 1 is the number of consecutive 
offspring generated by the same subcomplex. 

(VIII) Repeat Steps I-VII fl times, where fl >/1 is the number of evolution steps 
taken by each complex before complexes are shuffled. 

In the CCE algorithm, each point of a complex is a potential 'parent' with the 
ability to participate in the process of reproducing offspring. (The terms 'parent', 
'reproduction', 'offspring', etc., are borrowed from the literature on the genetic 
method for global optimization.) A subcomplex functions like a pair of parents, 
except that it may comprise more than two members. Use of a stochastic scheme to 
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construct subcomplexes allows the parameter space to be searched more thoroughly. 
The idea of competitiveness is introduced in forming subcomplexes, based on the 
notion that the stronger survives better and breeds healthier offspring than the 
weaker. Inclusion of the competitive measure expedites the search towards promising 
regions. The measure of competitiveness in the reproductive process is realized by use 
of a trapezoidal probability distribution which favors better points over worse points. 
The Nelder-Mead Simplex downhill search scheme is utilized to generate offspring. 
This scheme is insensitive to nonsmoothness of the response surface and allows the 
algorithm to make use of response surface information to guide the search toward the 
improvement direction. In addition to the Simplex scheme, offspring are introduced 
at random locations of the feasible space under certain conditions to make sure the 
evolution process is not interrupted as a result of some unusual conditions encoun- 
tered in the search space; this is somewhat analogous to mutation in response to stress 
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Fig. 1. Illustration of the shuffled complex evolution (SCE-UA) method• 
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in biological evolution. Every member in the population is given at least one chance to 
contribute to the reproduction process before being displaced or discarded. Thus, no 
information contained in the sample population is ignored. 

The SCE-UA method is explained in Fig. 1, by use of a two-dimensional example. 
The contour lines represent a function surface with a global optimum located at (4,2) 
and a local optimum located at (1,2). Fig. l(a) shows that a sample population 
containing s (in this case, 10) points is divided into p (two) communities (com- 
plexes), each containing m (five) members, marked by • and ,, respectively. As 
each community undergoes an independent evolution process, one community 
(marked by .)  is converging toward the local optimum, whereas the other (marked 
by •) is converging toward the global optimum. The locations of the members in the 
two evolved communities at the end of the first evolution cycle are illustrated in Fig. 
l(b) (to demonstrate clearly the scenario that the two complexes were converging 
toward two distinct optima, the number of evolution steps taken by each complex,/3, 
was set to a relatively large value of 10). The two evolved communities are shuffled 
according to the procedure specified in Step 5. The new memberships of the two 
evolved communities after shuffling are displayed in Fig. l(c), and the two com- 
munities at the end of the second evolution cycle are shown in Fig. l(d). It is clear 
that both communities are now converging toward the global optimum. 

The CCE algorithm is illustrated graphically in Fig. 2, where the black dots (•) 
indicate the locations of the points in a complex before the evolution step is taken. A 
subcomplex containing q points (in this case, three, i.e. forming a triangle) is selected, 
according to a trapezoidal probability distribution, to initiate an evolution step. The 
symbol • represents the new points generated by the evolution steps. The 'reflection' 
step, which is implemented by reflecting the worst point in a subcomplex through the 
centroid of the other points, is displayed in Figs. 2(a), 2(b), and 2(d). Because the 
reflected point has a lower criterion value than the worst point, the worst point is 
discarded and replaced by the new point. Thus, an evolution step is completed. In Fig. 
2(c), the new point is generated by a 'contraction' step (the new point lies halfway 
between the worst point and the centroid of the other points), after rejecting a 
reflection step for not improving the criterion value. In Fig. 2(e), a 'mutation' step 
is taken by randomly selecting a point in the feasible parameter space to replace the 
worst point of the subcomplex. This is done after a reflection step is attempted, but 
results in a point outside of the feasible parameter space (another scenario in which a 
mutation step can be taken is when both the reflection step and the contraction step 
do not improve the criterion value). In this example, each subcomplex produces one 
offspring, i.e. a = 1. The final complex after/3 (five) evolution steps is illustrated in 
Fig. 2(f). 

3.3. Selection of algorithmic parameters 

The SCE-UA method contains many probabilistic and deterministic components 
that are controlled by some algorithmic parameters. For the method to perform 
optimally, these parameters must be chosen carefully. They are: m, the number of 
points in a complex; q, the number of points in a subcomplex; p, the number of 
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Fig. 2. Illustration of the evolution steps taken by each complex. 

complexes; Pmin, the minimum number of complexes required in the population; c~, 
the number of consecutive offspring generated by each subcomplex; ~, the number of 
evolution steps taken by each complex. 

Theoretically, the number of points in each complex, m, may take any value greater 
than or equal to two. However, if there are too few points in each complex, the search 
would proceed in a manner similar to the ordinary Simplex procedure, and the global 
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search capability would be undermined. Conversely, if m is chosen too large, it may 
result in excessive use of  the computer processing time (CPU) with no certain gain in 
effectiveness. Our previous investigation (see, e.g. Duan et al., 1993) indicated that, by 
setting m to 2n q- 1, where n is the number of  parameters to be optimized on, and 
varying the number of  complexes, p, the SCE-UA algorithm provided better overall 
performance in coping with a wide range of  optimization problems than by increasing 
the m value alone. 

The number of  points in each subcomplex, q, may vary between two and m. By 
selecting the value of  n + l, the subcomplex is chosen as a Simplex; this defines a first- 
order approximation (hyperplane) to the objective function surface and will, there- 
fore, give a reasonable estimate of  the local improvement direction. 

The number of  offspring which each subcomplex generates before it is put back into 
the complex, a, can be any number greater than or equal to one. If  a is equal to one, 
only one of  the original parents will be replaced. As a is increased, the search becomes 
more strongly biased in favor of  local search of  the parameter space. 

The number of  evolution steps taken by each complex before the complexes are 
shuffled,/3, can be any positive integer. If ~ is small, the complexes will be shuffled 
frequently, but will not be able to conduct much independent exploration of  the 
parameter space; if/3 is large, each complex will rapidly shrink into a small cluster, 
and global search effectiveness may be lost. 

The required number of  complexes, p, is strongly dependent on the nature of  the 
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Fig. 3. Convergence behavior of four of the NWSRFS-SMA model parameters for 100 independent trials of 
the Simplex algorithm (synthetic data study); dotted lines represent the 'true' parameter values (from 
Sorooshian et al., 1993). 
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problem (Duan et al., 1992, 1993; Sorooshian et al., 1993). The higher the degree of 
difficulty, the larger the number of complexes required to locate the global optimum. 

Parameter P~n, the minimum number of complexes (between one and p) required 
in the population, is introduced into the SCE-UA algorithm to improve efficiency. 
The justification is that as the search process proceeds, the population is converging 
into an increasingly smaller space, and fewer points are necessary to provide an 
adequate population density. 

The SCE-UA method, along with the widely used multi-start Simplex (MSX) 
method, was evaluated on some standard test problems as well as on the calibration 
of two watershed models (see Duan et al., 1992, 1993; Sorooshian et al., 1993). Figs. 3 
and 4 (from Sorooshian et al., 1993) demonstrated the capability of the SCE-UA 
method and the MSX method in finding the global optimum of the NWSRFS-SMA 
model parameters. Sorooshian et al. (1993) pointed out that in the 10 SCE-UA trials, 
the global optimum was located precisely with a 100% success rate, whereas none of 
the 100 Simplex trials was able to find the global optimum. The best estimated 
parameter set from the Simplex trials barely came within the 20% range of the global 
optimum. In conducting those evaluation studies, four of the algorithmic parameters 
of the SCE-UA method were assigned to some default values, as follows: (I) the 
number of points in a complex, m = 2n + 1; (2) the number of points in a sub- 
complex, q - - n  + 1; (3) the number of consecutive offspring generated by each 
subcomplex, c~ = 1; (4) the number of evolution steps taken by each complex,/3 = m. 
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Fig. 4. Convergence behavior of four of the NWSRFS-SMA model parameters for 10 independent trials of 
the SCE-UA method (synthetic data study); dotted lines represent the 'true' parameter values (from 
Sorooshian et al., 1993). 
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Different values for the other two parameters--the number of complexes p and the 
minimum number of complexes required in the population Pmin--were tested. How- 
ever, the merits of the default values for the four parameters listed above or the 
different values assigned to p and Pmin were never confirmed. Further, our experience 
with the SCE-UA method has indicated that the effectiveness and efficiency of the 
algorithm are influenced by the choice of the algorithmic parameters. Therefore, the 
main purpose of this paper is to investigate the proper choices for algorithmic 
parameters. More specifically, a series of experimental studies will be conducted to 
examine the proper values for p, Pmin, o4 and/3. When a selected algorithm parameter 
is being tested, other parameters will take on either their default values or the values 
explicitly specified in the text. 

4. Experimental studies, for determining the algorithmic parameters of the SCE-UA 
method 

4.1. Design of experimental studies 

The NWSRFS-SMA model embodies all the difficulties delineated in Table 1. It is 
used by the River Forecast Centers of the NWS to perform real-time river and flood 

=o-=" I( 11 1 " 1 J /  

w 

Fig. 5. Schematic description of the NWSRFS soil moisture accounting (NWSRFS-SMA) model (from 
Brazil, 1988). 



276 Q. Duan et al. / Journal of  Hydrology 158 (1994) 265-284 

Table 2 
Parameters of  the NWSRFS-SMA model 

Parameters Description 

U Z T W M  Maximum capacity of  the upper zone tension water storage (mm) 
U Z F W M  Maximum capacity of  the upper zone free water storage (mm) 
LZTWM Maximum capacity of  the lower zone tension water storage (mm) 
LZFPM Maximum capacity of  the lower zone free water primary storage (mm) 
LZFSM Maximum capacity of  the lower zone free water supplement storage (mm) 
ADIMP Additional impervious area (decimal fraction) 
U Z K  Upper zone free water lateral depletion rate (day ~ ) 
LZPK Lower zone primary free water depletion rate (day ~ ) 
LZSK Lower zone supplemental free water depletion rate (day i ) 
ZPERC Max imum percolation rate (dimensionless) 
REXP Exponent of  the percolation equation (dimensionless) 
PCTIM Impervious fraction of  the watershed area (decimal fraction) 
RIVA Riparian vegetation area (decimal fraction) 
PFREE Fraction of  water percolating from upper zone which goes directly to lower zone free 

water storage (decimal fraction) 
SIDE Ratio of  deep recharge to channel baseflow (dimensionless) 
RSERV Fraction of  lower zone free water not  transferable to lower zone tension water 

(decimal fraction) 

forecasts as well as extended streamflow predictions. The NWSRFS-SMA model was 
originally developed by Burnash et al. (1973) and modified by the Hydrologic 
Research Laboratory of the NWS (Peck, 1976; Brazil, 1988). A detailed description 
of the model is available in the literature (e.g. Burnash et al., 1973; Peck, 1976) and 
will not be discussed here. In this study, the research version of the NWSRFS-SMA 
model maintained by the Department of Hydrology and Water Resources, The 
University of Arizona, was used. 

Table 3 
The true parameter values and the lower and upper parameter bounds used for the synthetic study 

Parameter True value Lower bound Upper bound 

U Z T W M  56.000 10.000 150.000 
U Z F W M  46.000 10.000 75.000 
LZTWM 131.000 75.000 400.000 
LZFPM 162.000 50.000 1000.000 
LZFSM 23.000 10.000 300.000 
A D I M P  0.173 0.000 0.200 
UZK 0.245 0.200 0.400 
LZPK 0.009 0.001 0.020 
LZDK 0,043 0.020 0,250 
PCTIM 0.043 0.000 0.100 
ZPERC 226.000 5,000 250.000 
REXP 3.650 l~ 100 4.000 
PFREE 0.063 0.000 0,600 

Parameters not optimized: RSERV 0.3: RIVA = 0.0; SIDE - 0.0. 
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Fig. 6. Hydrologic data used for the calibration of the NWSRFS-SMA model. 

A schematic description of the NWSRFS-SMA model is presented in Fig. 5. The 
model is controlled by 16 parameters (see Table 2). The inputs to the model are the 
mean areal precipitation (ram) and the potential evapotranspiration (ram). The out- 
puts are the streamflow runoff (cms) at the outlet of the basin and the actual evapo- 
transpiration (ram). 

The precipitation and potential evapotranspiration data from the time 
period between 1 October 1955 and 30 September 1956 from the Leaf River 
Basin near Collins, Mississippi, were used as the model inputs. The parameter set 
obtained by Brazil 0988) was assumed as the 'true' parameter set (see Table 3), 
and using this and the precipitation and evapotranspiration inputs, a sequence 
of streamflows was generated. This sequence of streamflows was treated as the 
'observed' streamflow data for the calibration period. The precipitation and 
'observed' streamflow time series are displayed in Fig. 6. By using synthetically 
generated streamflow data, the precise 'true' global optimum is known beforehand. 
Hence, the experimental studies can be conducted without the influence of errors in 
the model structure. 

The optimization studies reported here simulated attempts to calibrate selected 
parameters of the NWSRFS-SMA model by initiating the search algorithm at 
randomly selected points in the feasible parameter space, defined as the hypercube 
bounded by the limits of the optimizing parameters as specified in Table 3. Parameters 
not being optimized were fixed to their 'true' values. Up to 13 out of the 16 model 
parameters were included for optimization. Three parameters, RSERV, RIVA, and 
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Table 4 

Optimization of various parameters: two-dimensional study results 

Parameter groups Average 

A B C D E F: 

p = 1 N S  a 10 10 10 10 10 10 10 

A F E  b 99 120 108 92 89 t 12 103 

p = 2 NS 10 10 10 10 10 10 10 

A F E  193 220 188 187 184 168 190 

a NS,  the number of successful runs. 
b A F E ,  the average number of function evaluations of the successful runs. 

SIDE, were fixed at the following values: RSERV = 0 . 3 ,  RIVA = 0.0, and 
SIDE = 0.0. These parameters are not optimizable and should not be changed unless 
hydrometeorological conditions indicate otherwise (Peck, 1976). 

The objective function (or calibration criterion) used was the mean daily square 
root o f  the difference between the observed flows and simulated flows (DRMS).  
Because there were no errors in the synthetic data, the criterion value at the 'true' 
parameter set (the global optimum) is known to be 0.0. Two stopping criteria were 
used to terminate an optimization run. First, an optimization run would be stopped if 
a D R M S  value of  10 -3 or less was obtained; in this case, the run was considered a 
success. If, however, before that occurring, the population o f  points converged into a 
small space, the measure of  which was less than 10-3% of  the feasible space, the run 
was also stopped and was termed a failure. 

4.2. Experimental Stud), I 

The first study explored whether different combinations of  model parameters 
chosen for optimization would influence the selection o f  the algorithmic parameter 
p. The first 12 parameters listed in Table 3 were divided into several groups which 

Table 5 
Optimization of various parameters: four-dimensional study results 

Parameter groups Average 

A B C 

p -  I N S  10 10 10 10 

A F E  465 272 359 365 

p = 2 N S  10 10 10 10 

A F E  537 506 519 521 

p - 4 N S  10 i0 10 10 

A F E  1038 957 957 984 
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Table 6 
Optimization of various parameters: six-dimensional study results 

Parameter groups Average 

A B 

p =  1 NS 6 6 6 
AFE 675 712 694 

p = 2 NS 10 10 10 
AFE 973 880 927 

p = 4 NS 10 10 10 
AFE 1783 1676 1729 

p = 8 NS 10 10 10 
AFE 3517 3172 3344 

c o n t a i n  p r e d e t e r m i n e d  n u m b e r s  o f  p a r a m e t e r s  n. F o r  e x a m p l e ,  i f  n = 2, t he  first  

p a r a m e t e r  g r o u p  w o u l d  t h e n  cons i s t  o f  p a r a m e t e r s  U Z T W M  a n d  U Z F W M ,  the  

s e c o n d  g r o u p  L Z T W M  a n d  L Z F P M ,  a n d  so  on.  F o r  a g iven  p a r a m e t e r  g r o u p ,  10 

i n d e p e n d e n t  o p t i m i z a t i o n  runs  were  c o n d u c t e d  w i t h  p set a t  d i f fe ren t  va lues .  T h e  

a l g o r i t h m i c  p a r a m e t e r  Pmin was  set e q u a l  to  p.  F o r  e a c h  set o f  runs ,  the  n u m b e r  o f  

successes  ( N S )  a n d  the  a v e r a g e  n u m b e r  o f  f u n c t i o n  e v a l u a t i o n s  ( A F E )  o f  the  success-  

ful  r u n s  w e r e  r e c o r d e d .  

T h e  resul ts  fo r  the  two- ,  fou r -  a n d  s i x - p a r a m e t e r  o p t i m i z a t i o n  s tudy  cases  a r e  

s h o w n  in T a b l e s  4, 5, a n d  6, respec t ive ly .  I n  the  t w o -  a n d  f o u r - p a r a m e t e r  o p t i m i z a -  

t i on  cases  (i.e. n = 2 a n d  n = 4), p = 1 was  suff icient  to  ensu re  t h a t  all  o p t i m i z a t i o n  

Table 7 
Test results on selection of Pmin; Scheme 1: Pmin = P 

Dimension, n 

2 4 6 8 10 13 

p = 1 NS I0 I0 6 0 0 0 
AFE 103 365 694 0 0 0 

p = 2 NS l0 10 10 10 1 0 
AFE 190 521 927 1682 4307 0 

p = 4 NS 10 10 10 10 10 
AFE 984 1730 2749 5949 13299 

p = 8 NS 10 10 10 10 
AFE 3344 5159 8367 14783 

p = 12 NS 10 10 10 
AFE 7466 11805 22248 

p = 20 NS 10 
AFE 33366 
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Tab le  8 

Test  resul ts  on selection ofPmin; Scheme 2: Pthin = p/2 

Dimension, n 

2 4 6 8 10 13 

p = 2 NS 10 9.7 9 0 0 0 

A F E  108 315 688 0 0 0 

p = 4 N S  10 10 10 1 0 
A F E  568 1017 1664 3415 0 

p = 8 NS 10 10 10 10 
A F E  1920 2981 5168 13719 

7~ = 12 N S  10 10 10 

A F E  4446 7239 14596 

p = 20 N S  10 

A F E  20526 

runs would successfully find the 'true' parameters. When n = 6, ap  value equal to two 
or larger was sufficient to achieve a 100% success rate. 

The test results in this study did not seem to indicate that different combinations of  
parameters chosen for optimization influenced the effectiveness or efficiency o f  the 
optimization runs. The dimensionality was the primary factor determining the proper 
choice o f  algorithm parameter p. 

Tab le  9 

Test  results on selection ofPmin; Scheme 3: Pmin : 1 

Dimension, n 

2 4 6 8 10 13 

p = 2 N S  10 9.7 9 0 0 0 

A F E  108 315 688 0 0 0 

p = 4 N S  10 8 0 0 0 
A F E  398 691 0 0 0 

p = 8 N S  9.5 2 0 0 

A F E  1088 1789 0 0 

p = 12 N S  10 8 0 0 
A F E  1864 2650 0 0 

p = 20 NS 10 6 0 
A F E  5776 7410 0 

p = 30 N S  10 0 
A F E  15176 0 

p = 40 N S  10 
A F E  33147 
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4.3. Experimental Study H 

Study II explored the selection of the minimum number of complexes required in 
the optimization search, Pmin- Three schemes for selecting Pmin were investigated. In 
Scheme 1, Pmin was set to p. In Scheme 2, Pmin was set to the larger value of one and 
INT(p/2), where INT is an operator truncating a real number to the nearest integer. In 
Scheme 3, Pmin was equal to one. Under each scheme, a series of optimization runs 
were carried out. The results are shown in Tables 7-9. In these tables, two values were 
recorded: the number of successes out of 10 runs and the average number of function 
evaluations of  the successful runs. For problems where dimensionality was smaller 
than eight, the results were obtained by averaging the results of different groups. The 
italic values in the tables indicate the recommended values for p if a 100% success rate 
is desired. 

The results suggest that Scheme 1 should be the preferred scheme to follow because 
it gives the best overall performance in terms of effectiveness and efficiency. Scheme 2 
generally fulfilled the promise to improve efficiency, but it was achieved at the cost of 
a slight decrease in effectiveness. Scheme 3 performed unsatisfactorily, compared with 
the other two schemes. 

4.4. Experimental Study III 

Study III explored the proper selection of  the number of  evolution steps taken by 
each complex before shuffling, ~. The study was conducted using the recommended 
parameter settings from Scheme 1 in Study II as the benchmark. The results for 
values one, n + 1, 2n + 1, 3n + 1, and 4n + 1, where ~ = 2n + 1 is the default setting, 
are given in Table 10. The italic values indicate the best choices for ~ given n. There is 
no clear indication of  preferred strategy for selecting ~ according to the results of this 

Table 10 

Test results on selection of 

Dimension, n 

2 4 6 8 10 13 

= 1 NS 10 10 10 9 10 8 
AFE 95 335 906 1754 5027 14895 

= n + 1 NS 10 10 10 10 10 10 

A F E  96 348 924 1667 5199 14883 

= 2n + 1 a NS 10 10 10 10 10 10 
A F E  103 365 927 1682 5949 13299 

= 3n + I NS 10 10 10 10 10 10 
A F E  98 297 1109 1892 5190 14856 

= 4n + 2 NS 10 10 10 10 10 10 

AFE  99 331 1001 2083 6159 15119 

a Default  value in the SCE-UA algorithm. 
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particular study. It seems clear, however, that, by setting 3 to too small a value, there 
is a danger of  compromising the effectiveness of the algorithm (see Table 10, the case 
for i3 = 1 and n = 8, 13). It was also obvious that if the value for 3 was too large (e.g. 
/3 = 4n + 1), the efficiency is decreased. Therefore, we continue to recommend the use 
of  default value of/3 -- 2n + 1. 

4.5. Experimental Study IV 

This study examined the choice of  the number of offspring produced by each 
subcomplex, a. Again, the recommended settings in Scheme 1 of Study II were 
used as a benchmark for comparison purpose. The results for a = 1 and a = 2, 
where the former is the default setting, are shown in Table 11. The results clearly 
show that the default setting is far superior to the second setting. 

4.6. Summary of the results 

We have conducted extensive numerical studies to investigate the proper selection 
of four algorithmic parameters of the SCE-UA method--p ,  Pmin, o~, and/3. The first 
experimental study found that, no matter what parameters were chosen for optimiza- 
tion, the SCE-UA method was consistently able to find the 'true' parameters, pro- 
vided that a sufficiently large value for p, the number of  complexes, was given. 
Experimental Study II investigated three schemes for selecting Pmin" ( 1 ) P m i n  ~ - P ;  

(2) Pmin = p/2; (3) Pmin ---- 1. It was recommended that Scheme 1, which sets Pmin 
equal to p, should be used. Study III examined the selection of  f3. The results did 
not give a clear indication of  the preferred choice, but did, however, implicate the 
shortcomings of choosing a value that is too small or too large. Therefore, we 
continue to recommend that the default value of 2n + 1 should be used. Study IV 
clearly showed that the value for a should be set to one, the default value. 

5. Conclusions 

The inability to find the global optima for parameters of conceptual watershed 

Tab le  l 1 

Test  resul ts  o n  select ion o f  t~ 

D imens ion ,  n 

2 4 6 8 10 13 

a = 1 ~ N S  10 10 10 10 10 10 
A F E  103 365 927 1682 5949 13299 

c~ = 2 N S  9 0 0 0 0 0 

A F E  254 0 0 0 0 0 

De fau l t  value  in the  S C E - U A  a lgo r i t hm.  
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models by conventional optimization methods has, in the past, caused deep frustra- 
tion among model users and thus limited the usefulness of  such models. With the 
advent of  a newly developed global optimization me thod- - the  SCE-UA m e t h o d - -  
we can now produce reliable estimates of  global optima for large complex optimiza- 
tion problems. The extensive experimental studies presented here illustrate how to use 
the SCE-UA method in an efficient and effective manner. 

The experimental studies were carried out by using a complex watershed mode l - -  
the NWSRFS-SMA mode l - -as  a test problem. It is our belief, as well as that of  many 
other researchers and practitioners, that this model embodies many typical problems 
encountered in the calibration of  watershed models, and that it is one of  the more 
difficult watershed models to calibrate (Brazil and Hudlow, 1980; Duan et al., 1992). 
Therefore, the recommended values for the SCE-UA algorithmic parameters derived 
here can be construed as guidelines for most applications. However, owing to the 
diverse and peculiar nature of  the modeling problems we face every day, it may be 
necessary that experimental procedures similar to those delineated in this paper be 
employed to derive the preferred algorithmic parameters for a particular problem. 
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