

#### **Obstacles and Pitfalls**

# Simulating the Water Balance of Lake Victoria Catchment

stefan.liersch@pik-potsdam.de

Fred F. Hattermann, Hagen Koch





#### **Overview**

- SWIM vs. SWAT
- Lake Victoria basin characteristics
- Effects of papyrus swamps, lakes and wetlands
- **Model calibration** (with and without considering papyrus swamps)
- Do parameter settings matter?
  - Why, when and in how far?
  - Depending on research question?
- What are the implications for impact studies?



# SWIM vs. SWAT

- Are there any differences?
  - No, not significantly
  - Same model structure
  - Similar basic assumptions and equations
  - Some specific functionalities
    - Irrigation
    - Dams and reservoirs
    - ...



#### SWIM vs. SWAT



#### SWIM vs. SWAT







# **SWIM**













#### **Study Area**

Ρ

IK



#### **Challenges**

- Catchment size ~260,000 km<sup>2</sup>
- The Lake Victoria itself ~67,000 km<sup>2</sup> (Reservoir)
- Heterogeneity of the catchment
- Lakes and swamps
- Data quality and uncertainties
  - Rainfall over the lake
  - Evaporation over the lake

- ...



### Water Balance of Lake Victoria

- Lake rainfall ~1850 mm
- Tributary inflow ~340 mm
- Lake evaporation ~1590 mm
- Lake outflow ~520 mm





# **Study Area**

#### **Kagera River Catchment**







stefan.liersch@pik-potsdam.de SWAT Conference, Toulouse, July 2013

## **Kagera Catchment**

#### 1/3 of tributary inflow



Discharge





SWAT Conference, Toulouse, July 2013

#### Lakes and Swamps

PIK



stefan.liersch@pik-potsdam.de SWAT Conference, Toulouse, July 2013





stefan.liersch@pik-potsdam.de SWAT Conference, Toulouse, July 2013

#### **Processes**

#### • Storage effect

- Riverine wetlands (HRUs) considered as storage
- Release as percentage of actual storage volume

#### • Lag in river runoff

- Every drop of water from upstream and the subbasin itself are routed through the wetland storage
- "Losses"
  - Increased evapotranspiration in wetlands (ET<sub>act</sub> > ET<sub>pot</sub>)
  - Seepage  $\rightarrow$  ground water recharge



#### **Calbration**

- Is it possible to calibrate the SWIM model to the catchment without considering these "special features"?
- Yes, it is!
  - Increase ET<sub>pot</sub> correction factor \*5
  - Muskingum routing parameter settings to smooth discharge curve

- What are the implications for impact studies assuming changing boundary conditions? Are there any at all?
- Yes, there are!



#### **Input Data**

- SRTM DEM 90m
- Soil: HWSD (FAO74) for Africa
- Land use: GLC2000
- Climate: Watch Forcing Data (WFD)
- Discharge: GRDC



### **Model Calibration**

#### **Discharge at Kagera Outlet**



Year

### **Model Calibration**

Ρ

IK



stefan.liersch@pik-potsdam.de SWAT Conference, Toulouse, July 2013

## **Climate Sensitivity**

#### **Discharge historical runs (1970–1999)**



#### Mean annual temperature (Median of 5 climate models)



#### Mean annual precipitation (Median of 5 climate models)



PIK

stefan.liersch@pik-potsdam.de SWAT Conference, Toulouse, July 2013

#### **Relative differences RCP8.5 (2071–2100 to 1971–2000)**



**Relative differences RCP8.5 (2071–2100 to 1971–2000)** 



Month

**Relative differences RCP8.5 (2071–2100 to 1971–2000)** 



# Conclusions

- The catchment is very sensitive to climate (rainfall)
  - Data quality
  - Uncertainties in applying climate projections
- Parameterisation matters!
  - Implications under different boundary conditions are likely!
  - Reverse trends are possible!
- Are processes represented adequately?
- Large scale applications
  - What level of detail is required?
- Communicate the weaknesses of your study



### Which type of modeller are you?





