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.l Monitoring 1 (River/hourly scale)
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By chamber experiment, the values of a for ENT and EC were
determined to be 0.27 m2 MJ-1 and 0.30 m2 MJ-1

Cho et al (2010), Water Research
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B Modeling 1 (River/hourly scale)

* Hydrodynamic model: Saint-Venant equations
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B Monitoring 2 (Creek/sub-hourly scale)
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Modeling 2 (Creek/sub-hourly scale)

* Hydrodynamic model: Saint-Venant equation
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Bacteria module in SWAT

The Soil and Water Assessment Tool (SWAT) was expanded by adding a
bacteria module (Sadeghi and Arnold, 2002).

Baffaut and Benson (2003) used the bacteria module to predict flow rates and
fecal coliform concentration.

Parajuli et al., (2007; 2009) applied this module to modeling nutrient and fecal
coliform in two different sub-basins in Kansas.

Coffey et al. (2010) used the original version of the SWAT to predict fecal
coliform in Irish catchments, showing satisfactory prediction accuracies in the
calibration step.

In addition, the SWAT bacteria module was modified to consider streambed
fecal coliform release and deposition (Kim et al., 2010).

The effect of solar radiation has been considered in simulations of fecal
coliform concentration in a water body (Cho et al., 2012).
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.l Box plots on bacterial observation
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Fecal bacteria [CFU or MPN 100 ml™ ]
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l Bacterial sources
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g@ Original version of SWAT
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It does not have any consideration on the seasonal

variability of regrowth/die-off

For example,

If dieoff rate is 0.2 and growth is 0.1, bacteria are always
going to be died during the simulation.

If growth rate is 0.2 and dieoff is 0.1, bacteria are always

going to be grown during the simulation.
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.l Dominant factor: Regrowth vs Runoff?
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.l New bacterial subroutines I
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.l New bacterial subroutines 11
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" Modeling results
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We found seasonal variability of bacteria concentrations in four
watersheds, showing that high concentrations in summer and low
concentration in winter.

It can be explained by that bacterial regrowth is dominant in summer
season, while bacteria are inactivated or died in winter season in both
soil and surface waters.

SWAT model is oversimplified to simulate the seasonal variability of
bacteria; thereby it was modified by adding new subroutine, attempting
to simulate bacterial regrowth and die-off in both soil and in-stream.

The modified SWAT model well reproduced the seasonal variability of
fecal bacteria from four different watersheds.

The modified SWAT module was validated with bacteria observation
could be a reliable assessment tool which provides scientific information
for water quality and public health management.



B The SWAT model in PNAS ! (IF=9.737)
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B Modeling approach
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.l Our study in Media
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