Developing new bacteria subroutines in the SWAT model

Kyung Hwa Cho¹, Yakov A. Pachepsky², Andrew D. Gronewold³, Jung-Woo Kim⁴, and Joon Ha Kim⁵

¹ School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea
² USDA-ARS, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Building 173, BARC-East, Beltsville, MD 20705, USA
³ NOAA, Great Lakes Environmental Research Laboratory, Ann Arbor, MI 48108, USA
⁴ Radioactive Waste Technology Development Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, 305-353, Republic of Korea
⁵ School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, South Korea

025

Monitoring 1 (River/hourly scale)

Gwangju, South Korea

Cho et al (2010), Water Research

Monitoring results

Modeling 1 (River/hourly scale)

(A)

Method

Hydrodynamic model: Saint-Venant equations

Transport model: Advection-Dispersion-Reaction-**Resuspenstion**

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} - D \frac{\partial^2 C}{\partial x^2} + kC - R \frac{C_s}{h} = source \ term$$

By chamber experiment, the values of α for ENT and EC were determined to be 0.27 m2 MJ-1 and 0.30 m2 MJ-1

Cho et al (2010), Water Research

Color contour plots of the observed and predicted spatiotemporal variations of EC and ENT concentrations

Monitoring 2 (Creek/sub-hourly scale)

Study area at USDA-ARS OPE3 research site; (A) Manure applied, (B), (C), and (D): No manure applied.

Water dumping experiment: Quantification of resuspension of *E.coli*

Flow rates, turbidity, and EC concentrations during an artificial high-flow event

Cho et al (2010), Journal of Hydrology

Modeling 2 (Creek/sub-hourly scale)

* Hydrodynamic model: Saint-Venant equation

Spatiotemporal patterns of calculated velocity (A), relative shear stress (B), and *E. coli* resuspension rate (C) under artificial high flow event; vertical axis is the distance from monitoring site station

Bacteria module in SWAT

- The Soil and Water Assessment Tool (SWAT) was expanded by adding a bacteria module (Sadeghi and Arnold, 2002).
- Baffaut and Benson (2003) used the bacteria module to predict flow rates and fecal coliform concentration.
- Parajuli et al., (2007; 2009) applied this module to modeling nutrient and fecal coliform in two different sub-basins in Kansas.
- Coffey et al. (2010) used the original version of the SWAT to predict fecal coliform in Irish catchments, showing satisfactory prediction accuracies in the calibration step.
- In addition, the SWAT bacteria module was modified to consider streambed fecal coliform release and deposition (Kim et al., 2010).
- The effect of solar radiation has been considered in simulations of fecal coliform concentration in a water body (Cho et al., 2012).

Study sites

Stillwater, MA

Fig. 1. Little Cove Creek watershed in southern Pennsylvania and the location of three stream monitoring sites (CM2, CM3, and CM7) and three rainfall stations (TB2, TB3, and TB7).

Little cove, PA

Dr. Yakov

Pachepsky

Prof.

Tobiason

Komacwon, Korea

FIGURE 1. Locations of Pettiford and Jumping Run Creeks Watersheds.

Jumping run, NC

1.6 km

Land use

	Komacwon Creek	Jumping Run Creek	Little Cove Creek	Stillwater River
Watershed area [km ²]	40.7	3.2	68.0	76.9
Agriculture [%]	43.68	-	-	3.5
Pasture [%]	-	-	25.0	2.7
Forest [%]	43.09	51.95	71.9	73.6
Residential [%]	3.13	49.05	-	7.5

Box plots on bacterial observation

~~	Stillwater River	Jumping Run Creek	Little Cove Creek	Komacwon Creek
Sampling period	2005-2009	1998-2004	2008	2007-2009
# of Samples	462	85	52	29

Dominant factor: Regrowth vs Runoff?

Bacterial sources

	Sources	Sites	Landuse
Livestock	Cattle	LCC, STR	
	Horses		Pasture
	Swine		
Wildlife	Deer		
	Ducks		
	Geese	JRC, LCC, ST	Forest, Water
	Beaver	R	
Residential	Falling septic	KMC, JRC, S	Residential area
		TR	
Agricultural	Manure	KMC, LCC, S	Agriculture
source		TR	

Original version of SWAT

Limitation:

It does not have any consideration on the seasonal variability of regrowth/die-off

For example, If dieoff rate is 0.2 and growth is 0.1, bacteria are always going to be died during the simulation.

If growth rate is 0.2 and dieoff is 0.1, bacteria are always going to be grown during the simulation.

Dominant factor: Regrowth vs Runoff?

Modeling with the original version of SWAT

Cho et al (2012), Water Research

New bacterial subroutines I

New bacterial subroutines II

Modeling results

Conclusion

- We found seasonal variability of bacteria concentrations in four watersheds, showing that high concentrations in summer and low concentration in winter.
- It can be explained by that bacterial regrowth is dominant in summer season, while bacteria are inactivated or died in winter season in both soil and surface waters.
- SWAT model is oversimplified to simulate the seasonal variability of bacteria; thereby it was modified by adding new subroutine, attempting to simulate bacterial regrowth and die-off in both soil and in-stream.
- The modified SWAT model well reproduced the seasonal variability of fecal bacteria from four different watersheds.
- The modified SWAT module was validated with bacteria observation could be a reliable assessment tool which provides scientific information for water quality and public health management.

The SWAT model in PNAS ! (IF=9.737)

Modeling approach

Our study in Media

THANK YOU

Acknowledgements:

Gwangju Institute of Science and Technology

United States Department of Agriculture Agricultural Research Service

University of Massachusetts, Amherst

University of Michigan-Ann Arbor

Dong A University

National Oceanic and Atmospheric Administration