

Modeling of pesticide fate in a luxembourgish catchment with the Soil and Water Assessment Tool (SWAT) - combining modeling and monitoring

Stefan Julich^{1&2}, Tom Gallé², Marion Frelat², Michael Bayerle², Hassanya El Khabbaz² & Denis Pittois² ¹ Technische Universität Dresden, Institute for Soil Science & Site Ecology ² CRTE, CRP Henri Tudor - Luxembourg

LIFE07 ENV/L/00540

www.life-m3.eu

M³, WFD and POCIS

M³ is a demonstration project for WFD policy implementation of the LIFE+ programme
M³ tests state-of-the-art monitoring and modelling tools for programme of

measures (POM) evaluation

Can passive samplers (POCIS) help to validate and improve simulations of pesticide fate ?

25/07/2013

Introduction

2

The watershed

Land use: ~ 30% managed pasture

- ~ 30% agriculture (corn, winter cereals, summer cereals)
- ~ 6% urban area

25/07/2013

Introduction

The watershed

- Wark watershed \rightarrow ca. 82km²
- First simulation concentrate on Terbuthylazine
- Applied on corn (~ 465 ha in 2011)
- Statistics indicate a application of 600 g/ha on average

SKOC	WOF	HLIFE_F	HLIFE_S	AP_EF	WSOL
220	0.9	40	45	0.75	8.5

Introduction

Sources and dynamics of pesticide emissions

Pesticide emission	Spatial property	Trigger/Period	Monitoring technique
Cleaning of equipment, spilling of leftovers	WWTP, runoff from sealed surfaces	During application period, random	Passive sampler
Surface runoff fields, interflow, drainage	Diffuse input	Floodwaves, following intensive or sustained rain events	Triggered Autosamplers; Passive sampler
Groundwater flow	Diffuse input	+/- constant	Passive sampler, grab samples

Introduction

Case study Wark: Monitoring setup

Campaign	Aim	Validation	Location(s)	Parameter
		strategy		S
Event- triggered autosampler	Capture pesticide runoff in flood waves	Verify pesticide use and runoff behaviour in the catchment on 12 events	Catchment outlet	Pesticides, Anions, o- PO ₄ , NH ₄ , POC, DOC, part. P
Passive Samplers (POCIS) River	Continuous monitoring of pesticide immission concentration	Two-week exposure of POCIS provide mean concentrations to verify mass balances	6 sampling locations in the Wark and tributaries	Pesticides
Passive Samplers (POCIS) WWTPs	Continuous monitoring of pesticide emissions	Mean emission concentrations provide base- flow contribution of WWTPs	5 WWTPs in agricultural settings	Pesticides

25/07/2013

I Possibilities for sampling

POCIS theory

Main factors that influence adsorbed xenobiotic concentration (Cs):

- Adsorption rate: ku
- Desorption rate : ke

$$\frac{dCs}{dt} = ku \ Cw - keCs$$

- Time of exposure: t
- Xenobiotic concentration in water: Cw

$$\Rightarrow Cw = \frac{Ms(t)}{Rs * t}$$

With Rs= ku VT (lab determination)

R_s: sampling rate [L/d] k_u: uptake rate constant V_T: volume of water tank

25/07/2013

II Sampling strategy

Combination of POCIS and autosampler:

Possibility of xenobiotic load calculations during not-monitored period

25/07/2013

II Sampling strategy

Calculation of terbuthylazine balance

	Duration	Mean concentration (ng/L)	Rs (L/d)	Mass POCIS (ng)
POCIS	14.0 days	127	0.57	1013.5
Autosampler – floodwave	2.1 days	750	0.57	897.8
Difference for other days	11.9 days			115.7

C_w (base flow average)= 17 ng/L on the 12 days outside of floodwave

- Green-Ampt infiltration with 10 min rainfall
- Monte-Carlo Simulation with latin hypercube sampling
- Soil hydrology, groundwater, routing parameters
- 2500 runs

Results Hydrology

Wark May - July 2011

25/07/2013

Results Hydrology

11

Results Hydrology

	[ng/L]	01.06.2011	07.06.2011	18.06.2011	21.06.2011	17.07.2011	21.07.2011
	Warken	483	607	85	366	89	26
som) and I	Niederfeulen	965	1213	82	354	59	17
	Fel	12	15	2	10	10	3
	Mechelbaach	8	10	3	12	14	4
	Turel	15	19	144	617	105	30
	Mertzig	1987	2498	72	308	81	23

results

0 - 0.35

25/07/2013

Niederfeulen

0 - 0.3

	Experiment 2					
POCIS	First	Second				
catchment	application	application				
Mortaia	May 23 rd	June 3 rd				
wiertzig	0 - 0.35	0 - 0.3				
Niederfeulen	May 23 rd	June 3 rd				
Niederleulen	0 - 0.35	0 - 0.3				
Turalhash	May 23 rd	June 15 th				
Tureibach	0 - 0.3	0 - 0.2				
N/ a sh a lh a sh	May 23 rd	June 3 rd				
wiecheibach	0 - 0.1	0 - 0.1				
Fal	May 23 rd	June 3 rd				
rei	0 - 0.1	0 - 0.1				
Downstream	May 23 rd	June 3 rd				
Niederfeulen	0 - 0.35	0 - 0.3				

tun	Mertzig		Mertzig Niederfeulen		Turelbaach		Mechelbaach		Fel		Downstream Niederfeulen	
	May 23 rd	June 3 rd	May 23 rd	June 3 rd	May 23 rd	June 15 th	May 23 rd	June 3 rd	May 23 rd	June 3 rd	May 23 rd	June 3 rd
95	0.14	0.05	0.28	0.04	0.00	0.06	0.09	0.03	0.01	0.09	0.04	0.21
51	0.26	0.05	0.23	0.15	0.07	0.07	0.06	0.02	0.06	0.07	0.04	0.03
87	0.13	0.15	0.11	0.03	0.00	0.03	0.09	0.04	0.06	0.09	0.00	0.26
573	0.07	0.14	0.12	0.26	0.04	0.11	0.00	0.06	0.07	0.06	0.03	0.26
576	0.33	0.28	0.00	0.08	0.00	0.14	0.08	0.00	0.00	0.05	0.03	0.17
896	0.06	0.20	0.22	0.14	0.01	0.00	0.05	0.08	0.01	0.01	0.00	0.17

to conclude:

- For the simulation of pesticide exports the model has to be able to predict the driving hydrological processes to a satisfactory degree. This includes the ability of the model to simulate rainfall-runoff events at a similar temporal and spatial scale as they occur in reality.
- The use of models is connected with a minimum requirement of monitoring data e.g. measured discharge and rain fall to drive the model correctly and to assess the model ability to correctly predict all relevant rainfall runoff processes
- Devices like POCIS are useful tools to spatially validate the simulated pesticide exports from agricultural areas. Although their informational value rises and falls with additional data like spatially discrete discharge and rain fall to correctly interpret the results of the POCIS measurements.
- For the simulation of pesticide exports from agricultural fields detailed information on application dates and amounts on regional scale are necessary.

25/07/2013

Conclusions