Assessment of Climate Change Impact on Best Management Practices in the Yeongsan Watershed using the Multi-objective Decision Support System

Dong Jin Jeon, Kyung Hwa Cho*, Jae-Woon Jung**, Yongen Park, Seung Won Lee, Joon Ha Kim[†]

Environmental Systems Engineering Laboratory (ESEL) School of Environmental Science and Engineering, Gwanju Institute of Science and Technology (GIST)

*School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST)

****Yeongsan River Environment Research Laboratory**

1 Introduction

Methodology

3 R

2

4

Conclusions

Introduction

Introduction Background

How to reduce the NPS pollutants efficiently?

Algae blooms in large rivers in Korea have been a big problem last year
Eutrophication of freshwater can be lead to the algae blooms

Solution : To suggest the best management practices (BMPs)

✓ An alternative way to moderate nonpoint sources loading and improve water quality by controlling runoff, sediments and nutrients, in agricultural watersheds.

Introduction Background

with runoff change

Introduction Background

Objective To assess the change of optimized BMPs reflecting future climate at agricultural area.

•-----•

✓ To develop a hydrologic model for forecasting the flow, sediment, and TP in Yeongsan River

- ✓ To estimate the TP removal efficiency of BMPs using hydrologic model
- ✓ To apply the climate change scenario in the SWAT model

Methodology

Methodology Site Description

- Area [km²] : 724.37
- The number of sub-basins : 5
- The number of HRU : 36
- The number of Rice HRU : 6
- The number of Soybean HRU : 6

Land Use	Area (%)
Forest-Evergreen	24.85
<mark></mark> Rice	21.08
Forest-Mixed	12.34
Forest-Deciduous	10.94
🤁 Soybean	8.66
📰 Residential-High Density	7.87

 ✓ HRU(Hydrologic Response Unit) are classified by land use, slope, and soil component

Methodology Flow Chart

11

✓ SWAT is a basin-scale and continuous-time hydrologic model with GIS interface

✓ Water balance equation :
$$SW_t = SW_o + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - w_{seep} - Q_{gw})$$

 SW_t : final soil water content, SW_o : initial soil water content, t: time, i: day, R_{day} : amount of precipitation, Q_{surf} : amount of surface runoff, E_a : amount of evapotranspiration, w_{seep} : amount of water entering the vadose zone from the soil profile, Q_{gw} : amount of return flow

Methodology SWAT model

Simulation Period : 11 years (2000 – 2010)

2000-2002	2003-2006	2007-2010
Spin Up	Calibration	Validation

> Sensitivity analysis : LH-OAT (Latin hypercube one-factor-at-a-time)

✓ To process by performing the LH samples in the role of initial points for a OAT design.

✓ The method to comprehend efficiently global sensitivity about the whole boundary of parameter.

Calibration/Validation

Procedure : Flow discharge -> Sediment -> TP

✓ Flow discharge : SCE-UA(Shuffled complex evolution at university of

Arizona) method was used to analyze optimization in a single run.

✓ Sediment, TP : Pattern search using MATLAB

Methodology BMPs

List of representation of simulated BMPs

✓ Rice area

	BMP type	Cost (\$/ha)
1	Conservation Tillage (CT)	0
2	Parallel Terrace (PT)	74-9
3	contour Cropping (CC)	16.8
4	Detention Pond (DP)	99
5	CT/PT	74.9
6	CT/CC	16.8
7	CT/DP	99
8	CT/PT/DP	173.9
9	CT/CC/DP	115.8

Soybean area

	BMP type	Cost (\$/ha
10	Conservation Tillage (CT)	0
11	No Tillage (NT)	17.25
12	Parallel Terrace (PT)	74.9
13	Contour Cropping (CC)	16.8
14	Detention Pond (DP)	99
15	Riparian Buffers (RB) 10m	29.35
16	CT/PT	74.9
17	CT/CC	16.8
18	CT/DP	99
19	CT/RB	29.35
20	NT/PT	92.15
21	NT/CC	34.05
22	NT/DP	116.25
23	NT/RB	46.6
24	CT/PT/DP	173.9
25	CT/CC/DP	115.8
26	CT/PT/RB	104.25
27	CT/CC/RB	46.15
28	NT/PT/DP	191.15
29	NT/CC/DP	133.05
30	NT/PT/RB	121.5
31	NT/CC/RB	63.4

Simulated BMPs by SWAT

BMP	Parameter	Value
Conservation Tillage (CT)	Till ID: 3 CN2 OV_N	CN2-2 0.30
Parallel Terrace (PT)	CN2 P-factor	CN2-5 0.1 if slope = 1 to 2% 0.12 if slope = 3 to 8%
Contour Cropping (CC)	CN2 P-factor	CN2-3 0.5 if slope = 1 to 2% 0.6 if slope = 3 to 8%
Detention Pond (DP)	pnd_k pnd_fr pnd_ESA	0 0.01 0.75
Nutrient Management (NM)	Amount of fertilizer	-25%
Riparian Buffers (RB)	FILTERW	10

✓ Objective function

- 1) Minimizing TP loads
- 2) Minimizing cost for implementing BMPs

✓ Fitness function

Chi-squared value aimed to find the combination of objective functions that would give the lowest chi-squared value $\chi^2 = \frac{(Y_2 - Y_1)}{Y_1} = \frac{Y_1 : \text{Implementation cost}}{Y_2 : \text{TP loads}}$

2090-2100 years

2040-2050 years

(Source: Korea Meteorological Administration (KMA)")

Scenario collection

✓ Scenario duration : 2040-2050, 2090-2100

✓ Scenario composition : daily precipitation, daily relative humidity, daily max/min

temperature, daily wind speed

Results

Results SWAT Sensitivity Analysis

Flow Discharge

Rank	Name	Definition	Bounds	Calibration value	Process
1	Surlag	Surface runoff lag coefficient	0-10	1.076	bsn
2	Alpha_Bf	Baseflow alpha factor (days)	0-1	1	gw
3	Ch_N2	Manning coefficient for channel	0-1	0.728	rte
4	Ch_K2	Effective hydraulic conductivity in main channel alluvium (mm/hr)	-0.01-150	77.894	rte
5	Cn2	SCS runoff curve number for moisture condition 2	-25-25	4.486	mgt
6	Esco	Soil evaporation compensation factor	0-1	0.203	bsn, hru
7	Sol_K	Soil conductivity (mm/hr)	-25-25	-24.837	Sol
8	Sol_Awc	Available water capacity of the soil layer (mm/mm soil)	-25-25	25	Sol
9	Canmx	Maximum canopy index	0-10	10	hru
10	Sol_Z	Soil depth	-25-25	-25	sol
11	Blai	Leaf area index for crop	0-1	0.759	crop
12	Gwqmn	Threshold depth of water in the shallow aquifer required for return flow to occur (mm)	-1000-1000	630.23	gw

✓ The most sensitive parameter is Surlag which is a coefficient related with surface runoff volume.

Results SWAT Model Calibration/Validation

Flow Discharge

✓ Typically values of R² and NSE greater than 0.5 are considered acceptable. (ref. Daniel N. Moriasi, 206)

Engineering Laborator

Results SWAT Sensitivity Analysis

> Sediment

Rank	Name	Definition	Bounds	Calibration Value	Preocess
1	PRF	Peak rate adjustment factor	0-2	0.290	rte
2	SPEXP	Exponent in sediment transport equation	1-1.5	1.295	rte
3	SPCON	Coefficient in sediment transport equation	0.0001-0.01	0.0005	bsn
4	ADJ_PKR	Peak rate adjustment factor	0.5-1.5	0.500	bsn
5	USLE_P	USLE support practice factor	0.1-1	1.000	bsn
6	CH_EROD	Channel erodibility factor (cm/hr/Pa)	-0.05-0.6	-	mgt
7	CH-COV	Channel cover factor	-0.001-1	-	bsn

✓ The most sensitive parameter is PRF which is adjustment factor of peak rate in channel.

Results SWAT Model Calibration/Validation

> Sediment

✓ Typically values of R² and NSE greater than 0.5 are considered acceptable. (ref. Daniel N. Moriasi, 206)

Engineering Laborator

Results SWAT Sensitivity Analysis

> Total Phosphorus

Rank	Name	Definition	Bounds	Calibration Value	Process
1	RHCQ	Local algal respiration rate at 20°C	0.05-0.500	0.05	wwq
2	BIOMIX	Biological mixing efficiency	0-1	0.001	mgt
3	ERORGP	Phosphorus enrichment ratio	0-5	0.02	Hru
4	GWSOLP	Concentration of soluble phosphorus in groundwater contribution to streamflow from subbasin (mg P/L)	0-1.000	0	gw
5	AI2	Fraction of algal biomass that is phosphorus	0.01-0.02	0.01	wwq
6	PSP	Phosphorus availability index	0.01-0.7	0.28	bsn
7	BC4	Local settling rate for organic phosphorus at 20°C	0.1-0.7	0.7	swq
8	MUMAX	Maximum specific algal growth rate	1-3	-	wwq
9	RS5	Local settling rate for organic phosphorus at 20°C	0.05-0.1	-	Swq
10	P_UPDIS	Phosphorus uptake distribution parameter	0-100	-	Bsn
11	CMN	Rate coefficient for mineralization of the humus active organic nutrients	0.0001-0.003	-	Bsn
12	PHOSKD	Phosphorus soil partitioning coefficient (m ³ /Mg)	100-350	-	Bsn
13	PPERCO	Phosphorus percolation coefficient (10m ³ /Mg)	10-17.5	-	Bsn
14	RS2	Sediment source rate for soluble phosphorus at 20°C	0.001-0.1	-	Swq

✓ The most sensitive parameter is RHCQ which is related with local algal respiration

Results SWAT Modeling Calibration/Validation

Engineering Laborator

> Total Phosphorus

BMPs efficiency and cost

✓ BMP types in rice area show relatively low removal efficiency than in soybean area

✓ Conservation tillage in both agricultural area has negative removal efficiency

Results MODSS (2000-2010)

- Optimal TP removal rate : 40 %
- Optimal BMP cost : 6 hundred thousand \$

HRU	Land	BMP
1	Rice	Contour Cropping
2	Rice	Contour Cropping
3	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
4	Rice	Contour Cropping
5	Soybean	Riparian Buffer
6	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
7	Soybean	Conservation Tillage, Riparian Buffer
8	Rice	Contour Cropping
9	Rice	Contour Cropping
10	Soybean	Conservation Tillage, Riparian Buffer
11	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
12	Rice	Terrace

Results Variation of climate change

> The daily average data of climate

Parameters	2000-2010	2040-2050	2090-2100
Precipitation	4.00	2.55	2.00
(mm)	4.06	3.55	3.96
Max tem (°C)	19.48	18.01	19.97
Min tem (°C)	9.98	9.56	11.55
Relative humidity (%)	66.62	75.08	74.72
Wind speed (m/s)	1.05	2.92	2.87

> SWAT model results with future climate change

Parameters	2000-2010	2040-2050	2090-2100
Flow discharge		24.02	24.61
(m³/s)	25.30	24.03	24.01
Sediment load	1145.00	000.00	1022.00
(ton/month)	1145.99	922.26	1032.80
TP load	20500 70		20076.07
(kg/month)	39599.76	36925.75 3	38976.37

Results BMPs with climate change

✓ Removal efficiency of conservation tillage in soybean area had differences between three

durations.

ngineering Laborat

Results MODSS with Climate change

The most efficiency BMP (2040-2050)

- Optimal TP removal rate : 41%
- Optimal BMP cost : 5.3 hundred thousand \$

HRU	Land	BMP
1	Rice	Contour Cropping
2	Rice	Contour Cropping
3	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
4	Rice	Contour Cropping
5	Soybean	Conservation Tillage
6	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
7	Soybean	Conservation Tillage, Riparian Buffer
8	Rice	Contour Cropping
9	Rice	Contour Cropping
10	Soybean	Conservation Tillage, Riparian Buffer
11	Soybean	Conservation Tillage
12	Rice	Contour Cropping

Results MODSS with Climate change

The most efficiency BMP (2090-2100)

- Optimal TP removal rate : 44%
- Optimal BMP cost : <u>5.8 hundred thousand</u>

HRU	Land	BMP
1	Rice	Contour Cropping
2	Rice	Contour Cropping
3	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
4	Rice	Contour Cropping
5	Soybean	Conservation Tillage
6	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
7	Soybean	Conservation Tillage, Riparian Buffer
8	Rice	Contour Cropping
9	Rice	Contour Cropping
10	Soybean	Conservation Tillage, Riparian Buffer
11	Soybean	Conservation Tillage, Contour Cropping, Riparian Buffer
12	Rice	Parallel Terrace

Results Variation of optimal BMP

Variation of climate

Parameters	2000-2010	2040-2050	2090-2100
Precipitation (mm)	4.06	3.55	3.96
Max tem (°C)	19.48	18.01	19.97
Min tem (°C)	9.98	9.56	11.55

Variation of runoff

Parameters	2000-2010	2040-2050	2090-2100
Flow discharge	25.20	24.02	24.61
(m³/s)	25.50	24.05	24.01
Sediment load	1145.00	022.26	1022.90
(ton/month)	1145.99	922.20	1052.00
TP load	20500.76	20025 75	20076 27
(ton/month)	39599.76	30925.75	38976.37

Variation of optimal BMP

Parameters	2000-2010	2040-2050	2090-2100
Optimal TP removal rate (%)	40	41	44
Optimal BMP cost	600	F 2 1	FOO
(million Won)	600	231	200
Changed BMP (HRU)	-	3	1

Conclusions

- The prediction of flow discharge and sediment from SWAT model was appeared suitable goodness of fit, however the TP prediction from SWAT model was appeared not suitable goodness of fit in study area.
- In the rice area, contour cropping was the BMP which could be optimized by the modeling approach.
- In the soybean area, conservation tillage and riparian buffer were the BMPs which could be optimized by the modeling approach.
- > The optimized BMPs in some HRUs are changed with future climate change.
- This study can open new approach to implement the BMPs by considering the future climate change and improve the water quality of Yeongsan River

Thank you

<u>djjeon@gist.ac.kr</u> (Dong Jin Jeon)

This research was supported by the Korea Ministry of Environment as "The Eco-innovation Project: Non-point source pollution control research group".

Results BMPs

➢ Rice area

	BMP type	Removal efficiency
1	Conservation Tillage (CT)	-2.55
2	Parallel Terrace (PT)	22.86
3	contour Cropping (CC)	30.99
4	Detention Pond (DP)	14.18
5	CT/PT	20.01
6	CT/CC	24.08
7	CT/DP	12.47
8	CT/PT/DP	31.54
9	CT/CC/DP	34.74

\succ	Soybean area	
	BMP type	Removal efficiency
10	Conservation Tillage (CT)	8.10
11	No Tillage (NT)	-1.34
12	Parallel Terrace (PT)	30.63
13	Contour Cropping (CC)	52.67
14	Detention Pond (DP)	14.93
15	Riparian Buffers (RB) 10m	72.67
16	CT/PT	33.74
17	CT/CC	51.21
18	CT/DP	21.26
19	CT/RB	74.88
20	NT/PT	24.98
21	NT/CC	44.05
22	NT/DP	13.69
23	NT/RB	72.31
24	CT/PT/DP	43.33
25	CT/CC/DP	58.33
26	CT/PT/RB	81.89
27	CT/CC/RB	86.66
28	NT/PT/DP	32.30
29	NT/CC/DP	52.58
30	NT/PT/RB	79.50
31	NT/CC/RB	84.71

Methodology Flow Chart

Objective function

1) Minimizing TP loads

2) Minimizing cost for implementing BMPs

2000-2010 years

Meteorological data

2040-2050 years

2090-2100 years

Introduction Literature review

History of BMPs with SWAT model

