Detailed spatial analysis of the plausibility of surface runoff and sediment yields at HRU level in a mountainous watershed in China

K. Bieger, G. Hörmann & N. Fohrer 2013 International SWAT Conference, Toulouse, France July 19, 2013

für Bildung und Forschung

Impacts of the Three Gorges Dam

Department of Hydrology and Water Resources Management – Bieger et al. -2-

YANGTZE-GEO

Land use change, erosion, mass movements and diffuse matter inputs in the Three Gorges Region

Coordination: Research Centre Jülich

Remote Sensing Potsdam	Land use change Giessen	Erosion Tübingen	Landslides Erlangen	Diffuse sediment and P inputs _{Kiel}
Assessment of mass move- ments using remote sensing techniques	Classification of land use and assessment of vulnerability	Assessment and analysis of soil erosion	Assessment and analysis of landslides	Analysis of sediment and phosphorus inputs to rivers using SWAT

Aim:

Analysis of land use change and vulnerability, risk assessment of mass movements, soil erosion and diffuse inputs to rivers

Study area: Xiangxi Catchment

- Catchment area: 3200 km²
- Length of Xiangxi River: 94 km
- Mean annual temperature: 16,9°C
- Mean annual precipitation: 1000 mm
- Mean discharge at gage: 36,4 m³/s
- Steep slopes: average 24°, maximum 76°

Observed and simulated streamflow

Observed and simulated sediment loads

Analysis of output at HRU level

- More precise targeting of Best Management Practices
- Plausibility check for spatial variability of processes within the watershed based on expert knowledge
- Surface runoff and sediment yield
 - forest < orange orchard < cropland
 - Yellowbrown soil (sandy) < Limestone soil (clayey)
 - slope class 1 (<15°) < 2 (15-25°) < 3 (25-35°) < 4 (35-45°) < 5 (>45°)

Surface runoff at HRU level

Department of Hydrology and Water Resources Management – Bieger et al.

-8-

Surface runoff and slope gradient

- Modification of equations for calculating surface runoff and lateral flow (Modifications A and B)
- Recalibration of slope length and daily curve number calculation method (Modifications C and D)

Department of Hydrology and Water Resources Management – Bieger et al. -9-

A: Slope adjustment of CN values

Department of Hydrology and Water Resources Management – Bieger et al. -10-

B: Equation for lateral flow estimation

Department of Hydrology and Water Resources Management – Bieger et al. -11-

C: Recalibration of average slope length

Increase of L_{hill} necessary

Department of Hydrology and Water Resources Management – Bieger et al. -12-

5

D: Daily variation of CN values

Soil moisture method:

Plant ET method:

$$S = S_{max} \cdot \left(1 - \frac{SW}{SW + \exp(w_1 - w_2 \cdot SW)} \right)$$
$$S = S_{prev} + ET \cdot \exp\left(\frac{-cncoef \cdot S_{prev}}{S_{max}}\right) - R_{day} + Q_{surf}$$

Strong impact on water balance, so appropriate method should be selected in an early stage of calibration!

Improved plausibility of surface runoff

Department of Hydrology and Water Resources Management – Bieger et al. -14-

Sediment yield at HRU level

Sediment yield and slope gradient

Department of Hydrology and Water Resources Management – Bieger et al. -16-

Conclusions

- Detailed analysis of model output at HRU level is highly recommendable
- In mountainous watersheds, particular focus should be placed on the dependence of surface runoff and sediment yield on slope
- The plausibility of surface runoff can be improved by modifying key algorithms and recalibrating selected parameters
- Sediment yields are highly dependent on HRU area

Thank you for your attention!

Bundesministerium für Bildung und Forschung

Contact: kbieger@hydrology.uni-kiel.de +49 431 8801238

Impact of HRU area on sediment yield

$$sed = 11.8 \cdot (Q_{surf} \cdot q_{peak} \cdot area_{hru})^{0.56} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot LS_{USLE} \cdot CFRG$$
$$q_{peak} = \frac{C \cdot i \cdot area_{hru}}{3.6}$$

1 HRU with an area of 100 ha:

$$q_{peak} = \frac{1 \cdot 1 \cdot 100}{3.6} = 27.8$$

sed = 11.8 \cdot (1 \cdot 27.8 \cdot 100)^{0.56} \cdot 1 \cdo

10 HRUs with an area of 10 ha each:

$$q_{peak} = \frac{1 \cdot 1 \cdot 10}{3.6} = 2.8$$

 $sed = 10 \cdot (11.8 \cdot (1 \cdot 2.8 \cdot 10)^{0.56} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1) = 762.6$

Department of Hydrology and Water Resources Management – Bieger et al. -19-

.26

Comparison of spatial output

Department of Hydrology and Water Resources Management – Bieger et al. -20-

Sediment yield from different land use types

Department of Hydrology and Water Resources Management – Bieger et al. -21-

Comparison of variants

