

Some modifications to the simulation of Irrigation practices in rice paddy using SWAT

Dr. Balaji Narasimhan Assistant Professor Department of Civil Engineering Indian Institute of Technology – Madras

Water Use

Ref. 6: "Water for People, Water for Life" United Nations World Water Development Report, UNESCO, 2003 www.unesdoc.unesco.org

Annual Renewable Water

Annual renewable water (m³/person/year)⁵

Irrigated Agriculture

Source: http://www.nationmaster.com

Chart 17 Planwise Irrigation Potential Created and Utilised (Cumulative)

Chart 12 Decadal Changes in Cropping Pattern According to Land Use Statistics - All India

Paddy is a major consumer of irrigation water
Tamil Nadu
Uses about 63% of total available water resources for cultivating paddy

Field water balance lowland rice

Source: IRRI

Irrigation efficiency ~ (conveyance efficiency X field application efficiency)=40%

	Earthen canals			Lined canals
Soil type	Sand	Loam	Clay	
Canal length				
Long (> 2000m)	60%	70%	80%	95%
Medium (200-2000m)	70%	75%	85%	95%
Short (< 200m)	80%	85%	90%	95%

Source: FAO manual

Irrigation methods	Field application efficiency		
Surface irrigation (border, furrow, basin)	60%		
Sprinkler irrigation	75%		
Drip irrigation	90%		

$$e = \frac{ec \times ea}{100}$$

with

e = scheme irrigation efficiency (%)
ec = conveyance efficiency (%)
ea = field application efficiency (%)

A scheme irrigation efficiency of 50-60% is good; 40% is reasonable, while a scheme a Irrigation efficiency of 20-30% is poor.

Auto Irrigation trigger

Plant growth Fraction of potential plant growth reduced due to water stress Soil water stress

1 – Depletion. Fac
Depletion factor
SW/TAWC

Сгор		Root zone depth	Allowable soil
		(ncz)). (m)	(P) ²
a Small vegetables			
Broccoli		0.4-0.6	0.45
Brussels sprouts		04-06	0.45
Cabhanes		0.5-0.8	0.45
Carrots		0.5-1.0	0.35
Cauliflowers		0.4-0.7	0.45
Celerv		0.3-0.5	0.20
Garlic		0.3-0.5	0.30
Lettuce		0.3-0.5	0.30
Onions	- dry	0.3-0.6	0.30
C NOTO	- green	0.3-0.6	0.35
	- seed	0.3-0.6	0.35
Sninach	5660	03-05	0.20
Radichas		0.3-0.5	0.20
		0.0 0.0	0.00
b. Vegetables – Solanu	m Family (Solanacea)		
Eggplant		0.7-1.2	0.45
Sweet peppers (bell)		0.5-1.0	0.30
Tomatoes		0.7-1.5	0.40
c. Vegetables – Cucum	ber Family (Cucurbitaceae)		
Cantaloupes		0.9-1.5	0.45
Cucumbers	 fresh market 	0.7-1.2	0.50
	 machine harvest 	0.7-1.2	0.50
Pumpkin, winter squash		1.0-1.5	0.35
Squash, zucchini		0.6-1.0	0.50
Sweet melon		0.8-1.5	0.40
Watermelon		0.8-1.5	0.40
d Roots and tubors			
Reat table		0.6.1.0	0.50
Cassava	war 1	0.6-1.0	0.00
Cassava	- year 1	0.5-0.8	0.35
Descript	- year z	0.7-1.0	0.40
Parships		0.0-1.0	0.40
Potatoes		0.4-0.6	0.35
Sweet potatoes		1.0-1.5	0.65
Turnips (and Rutabaga)		0.5-1.0	0.50
Sugar beet		0.7-1.2	0.553

Significant quantum of water is used in the cultivation of paddy.

Will there be enough water in the future to cultivate paddy?

www.climarice.org

Krishna Basin

Salient features Length: 1,400 km Drainage area: 258,948 sq.km Population: 76.5 million • Density: 287/sq.km Climate: Semi-aric Rainfall: 800mm • 300 - 2000mm

Surface Water potential 78.1 km³ Ground Water potential 26.41 km³ Close basin: All the water resources are allocated

Modeling Process

Analysis of weather data inputs from climate model Bias correction of precipitation Simulation of water availability at important control points Major reservoir locations and diversions Irrigation water demand

GFDL

Climate Model

18

Baseline, A1B and Y1B

- IPRC-RegCM
 - $-0.25^{\circ} \times 0.25^{\circ}$

11		

		•••••••
	***************************************	reeeeee

•••••••	· • • • • • • • <u>• • • • •</u> • • • • • • •	

	(<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	

*********		******
	**** ********** **********************	
	``````````````````````````````````````	
**********		
	• • • • • • • • • • • • • • • • • • •	
'.		
1		
/		
, -	. • • • • • • • • • • • • • • • • • • •	
•		
1	********************************	
	***************************************	



## **Reason for Bias in RCM**

Systematic model errors
 Imperfect conceptualization

Model physics is quite complicated

Discretization and spatial averaging within grid cells



## Need for Bias correction

## Rainfall underestimated

May not have enough water for irrigation
 Irrigation demand cannot be predicted correctly

## Rainfall overestimated

- May indicated more water is available
- Irrigation demand cannot be predicted correctly
- Flood and drought assessment



## Baseline scenario

#### Equi-probability transformation

• The simulated rainfall of a given probability of exeedance was made equivalent to the IMD rainfall of same exceedance



## Distribution transfer

# Probability mapping or quantile-quantile mapping







Source: Wikipedia

















#### **Almatti Reservoir**



#### Ujjaini Reservoir







## **ONGOING STUDIES**





















February 23, 2013

FTP Group Monitoring Workshop, Pondicherry University



Record daily measurements in the field water tube and percolation tube in order to estimate the field water balance based evapotranspiration.



#### Aquacrop – water productivity based crop growth model







 Improve the rice paddy irrigation routine within SWAT
 AQUACROP, ORYZA, and field observations
 Improve SWAT parameterization using thermal remote sensing based ET