

Björn Guse, Matthias Pfannerstill and Nicola Fohrer

IPACT

Abteilung Hydrologie und Wasserwirtschaft

Bundesministerium für Bildung und Forschung

- Changing climate conditions affect hydrological cycle
- Demand for modeling of future development of the hydrological cycle
- Modeling by using a calibrated hydrological model for recent conditions and simulating of different climate change scenarios
- Comparison of recent and future model results
- Investigation whether the hydrological model is able to reproduce the hydrological cycle for recent and for changed climate conditions

Methodical approach

1. Is SWAT able to model the discharge for all months?	2. Which are the months with the largest climate change effect?
Calibration and evaluation of SWAT for recent period	Climate change scenario runs for future period
Determination of months with model short-comings	Detection of the months with the largest climate signal on discharge
Linkage of limitations months with largest cha	in the recent period to nges in the future period
Requirement for a better adaption	of SWAT to changing conditions?

SWAT (Arnold et al., 1998)

STAR data set provided from Potsdam Institute for Climate Impact Research (Orlowsky et al., 2008)

- Selection of a constant parameter set for all stations
- Spatial variation of the most sensitive parameters for the six hydrological stations

Parameter	All sites
SURLAG	0.4
CANMX	+1.55
CN2	+1.31
SOL_AWC	+0.1
SOL_K	x 5.86

Parameter	Soltfeld	Muehlen- brueck	Eggebek	Sollerup- muehle	Sollerup	Treia
GW_DELAY	3	3	8	8	10	10
ALPHA_BF	0.025	0.03	0.014	0.01	0.01	0.01
RCHRG_DP	0.35	0.3	0.02	0.1	0.02	0.05
ESCO	0.5	0.5	0.9	0.9	0.9	0.9

Department Hydrology and Water Resources Management – Guse et al. -5-

- Comparison
- Visual inspe
- Underestima

 Good results of four performance measures for the six hydrological stations (daily calculation)

Hydrological station	Calibration 2001-2005				Validation 2006-2010			
	CE	PBIAS	MRE	RSR	CE	PBIAS	MRE	RSR
Soltfeld	0.73	25.2	0.33	0.52	0.71	22.2	0.18	0.54
Muehlenbrueck	0.82	12.6	0.39	0.43	0.84	10.1	0.13	0.41
Eggebek	0.72	4.3	-0.03	0.53	0.78	-0.8	-0.07	0.46
Sollerupmuehle	0.65	8.5	0.06	0.59	0.42	21.1	0.23	0.76
Sollerup	0.72	-8.2	-0.12	0.53	0.76	1.7	-0.03	0.49
Treia	0.77	3.2	-0.02	0.46	0.81	2.8	-0.01	0.44

CE=Nash-Sutcliffe Efficiency, PBIAS=Percentual Bias, MRE=Mean relativ error, RSR=RMSE standard deviation error

Long-term averaged monthly Flow Duration Curve (FDC) for Sollerup

- Ranking of discharge magnitudes
- Estimation how often a certain discharge is exceeded
- Monthly FDCs illustrates seasonal variations in discharge
- Overall good fit of measured and modeled discharge
- Underestimation of low flows in autumn

Department Hydrology and Water Resources Management – Guse et al. -8-

- 1. Selection of two climate scenarios from the STatistical Regional model (STAR) (Orlowsky et al., 2008) with linear temperature increases of 0K and 3K until 2060
- 2. SWAT model runs with climate input data from the two STAR scenarios
- 3. Determination of the signal of climate change on discharge in a monthly resolution for the future period (2021-2060)

STAtistical Regional model (STAR)

- Resampling approach
- Based on statistical characteristic of current climate
- Linear regression line of future climate
- Assuming that simulated climate is comparable with current one
- Temporal and spatial consistency among variables
- 100 simulations for each scenario

PACT Development of temperature and precipitation

- Temperature difference increases by the end of the simulation period
- In the last period slight change in precipitation

STAR data set (Orlowsky et al., 2008) provided by the Potsdam Institute for Climate Impact Research (PIK)

Water balance components (2021-2060)

- Small changes in precipitation and surface runoff
- Decrease of snowfall and groundwater flow
- Increase of ETP and PET

Department Hydrology and Water Resources Management – Guse et al. -12-

Monthly water components

Precipitation:

 Decrease in summer, increase in winter

Water yield:

- Decrease of water yield in late summer
- Time lag in discharge due to the storage

• Results derived from the output.std

Comparison of FDCs for 0K- and 3K scenario

Differences between 0K and 3K-scenarios

- Similar values for 0K in the four subperiods
- Discharge decreases in 3K-scenario
- Largest effect for 2051-2060 in autumn months

2021-2030

2031-2040

2041-2050

2051-2060

Department Hydrology and Water Resources Management – Guse et al. -15-

Monthly comparison of climate change scenarios for three discharge quantiles

- Comparison of discharge quantiles for
 low discharge (Q75)
 medium discharge (Q50)
 high discharge (Q25)
- Differences between 0K and 3K are similar for the three discharge quantiles

Department Hydrology and Water Resources Management – Guse et al. -16-

- SWAT model is able to reproduce the hydrological conditions of the Treene catchment
- Short-comings of model evaluation for recent period in autumn months
- Seasonal variations of climate change effects are projected with the largest changes in autumn
- Coincidence with periods of the largest effect of climate change on discharge for future period
- Requirements for improvements in modeling of low flows to obtain a better adaption of SWAT for climate change applications

Department Hydrology and Water Resources Management – Guse et al. -17-

IMPACT

Abteilung Hydrologie und Wasserwirtschaft

Norad !

Harrison from Blegger Marson

Bundesministerium für Bildung und Forschung