

Adapting SWAT for the Modeling of Pesticide Transport for a Tile-drained River Basin

by

Ting Tang
Ann van Griensven
Linh Hoang

Presented by Ting Tang

19-Jul-13 **@Toulouse, France – 2013 SWAT conference**

Agricultural pesticide loss in surface water:

<1% (Carter 2000)

Most important pathways

- Surface runoff
- Drainage flow (if present)

- Realistic quantification of pesticide fluxes in subsurface drainage flow at the basin scale remains a challenge.
- SWAT is believed to be a promising tool for pesticide transport and flux modeling.
- SWAT does not simulate pesticide transport in tile flow.

Adaptations to SWAT model

Methodology: SWAT adaptations

Ad.1 – For detailed mass balance analysis

- Print out intermediate outputs
- II. Outputs treated with MATLAB to generate MB

Outputs	Source file modified	Outputs	Source file modified
Total application	<u>apply.f</u>	Storage in soil	pesty.f
Effective application	<u>apply.f</u>	Leaching	pestlch.f
Decay on foliage	<u>decay.f</u>	Channel load (SR_soluble)	<u>sumv.f</u>
Decay in soil	<u>decay.f</u>	Channel load (SR_sorbed)	<u>sumv.f</u>
Storage on plant	<u>decay.f</u>	Channel load (lateral flow)	<u>sumv.f</u>

Methodology: SWAT adaptations

Ad.2 – To incorporate pesticide transport in tiles

- Introduce a new variable 'fqtile (ly, j)' in <u>percmain.f</u>
- II. Compute pesticide loss through tile flow in <u>pestlch.f</u> with

$$pst_{tile,ly} = conc_{pst,flow} * Q_{tile,ly}$$

Where: $pst_{tile,ly}$: amount of pesticide removed in tile flow from the layer tile located (ly) in kg pst/ha;

conc_{pst,flow}: concentration of pesticide in the mobile water for the given layer, in kg pst/mm H_2O ;

 $Q_{tile,ly}$: equals to 'fqtile (ly, j)', amount of tile flow loss in given soil layer in for HRU 'j', in mm H_2O .

Methodology: case study

The Odense River Basin

- ➤ Island of Funen, Denmark
- Area: 612 km²
- Agriculture dominated
- Heavily tile-drained
- Calibrated SWAT hydrological model
 - 30 subbasins
 - 808 HRUs

Methodology: Model setup

Selected pesticides: Bentazone, MCPA, Pendimethalin

Mobile
Non-persistent

Immobile Persistent

Parameters	unit	Bent.	MCPA	Pend.
IPNUM	-	31	234	167
SKOC	(mg/kg)/(mg/L)	34	35	5000
WOF	-	0.6	0.6	0.4
HLIFE_F	days	2	8	30
HLIFE_S	days	20	25	90
AP_EF	-	0.75	0.75	0.75
WSOL	mg/L	2300000	825	0.275
Ann. Aver. App. rate	kg/ha	0.106	0.511	0.067

Simulation duration:

8 years (1994-2001)

Warming-up: 1994

Inc. of tile pst. transport	Simulation code			
No	RunOri.L			
Yes	RunTile.L			

Results: Mass balance

Mass mismatch in % of the effective application ('+': / ': creation)

Pesticide	Bentazone	MCP	ndimethalin
RunOri.L	-0.002%	o Ital.	-0.388%
RunTile.L	-0.002%	m ² /0%	-0.388%

Total load to

streams: < 0.25%!!

- Not f seed, but acceptable in general;
- Better for Bent./MCPA;
- Influence on pesticide load prediction.

Results: Model improvement

Total MCPA load into streams, kg/ha

Modified SWAT2005 enables flux prediction during the wet season (winter).

More realistic

Average annual total channel load by pathway, kg/yr

Results: Instream concentration

Pesticide conc. at the watershed outlet, mg/L

The pattern for bentazone is similar to MCPA

Max_{obs}: Observed maximum conc. in

headwaters

(Kronvang et al. 2003; Styczen et al. 2004)

To conclude...

- Modified SWAT2005: more realistic for Odense, maybe used for modeling tile-drained basins with additional validation;
- Bentazone/MCPA more reliably simulated than pendimethalin (mass balance, load, instream concentration);
- > Preferred pathways -> not identical among pesticides.

Thanks!

References

- © Carter (2000), Herbicide movement in soils: principles, pathways and processes.
 Weed Research 40: 113-122 DOI 10.1046/j.1365-3180.2000.00157.x
- Neitsch, S. L., J. Arnold, J. R. Kiniry and J. R. Williams (2005), Soil and Water Assessment Tool Theoretical Documentation, Version 2005 USDA Agricultural Research Service & Blackland Research Centre, Texas A&M University, USA.
- Kronvang, B., H. L. Iversen, K. Vejrup, B. B. Mogensen, A. M. Hansen and L. B. Hansen (2003), Pesticides in streams and subsurface drainage water within two arable catchments in Denmark: Pesticide application, concentration, transport and fate. Ministry of Environment, Danish Environmental Protection Agency.
- Styczen, M., S. Petersen, M. Jessen, O. Z. Rasmussen, D. Andersen, M. Buck and P. B. Sørensen (2004), Calibration of Models Describing Pesticide Fate and Transport in Lillebæk and Odder Bæk CatchmentPesticides Research, pp. 218.

Supplementary info.

From Hoang et al, 2012

Period	Criteria/ Station	Daily			Monthly		
		45_26	45_21	45_01	45_26	45_21	45_01
Calibration	NSE _o	0.81	0.76	0.79	0.85	0.80	0.84
Validation	R_{O}	0.92	0.91	0.90	0.96	0.95	0.95
	NŠE _o	0.79	0.76	0.80	0.84	0.81	0.85
	R_Q	0.90	0.90	0.91	0.93	0.93	0.93

Supplementary info.

From Hoang et al, 2012