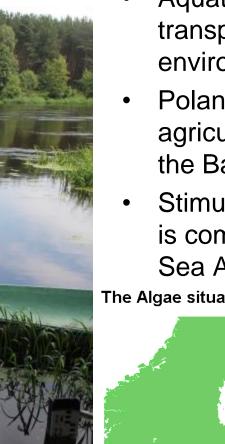
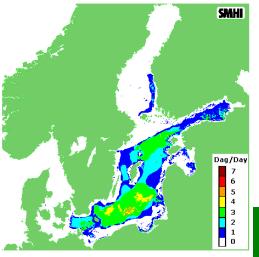


Climate change and agricultural development: Adapting Polish agriculture to reduce future nutrient loads in a coastal watershed


<u>M. Piniewski</u>, I. Kardel, M. Giełczewski, P. Marcinkowski, T. Okruszko

Warsaw Univeristy of Life Sciences, Department of Hydraulic Engineering, Poland

2013 International SWAT Conference. Toulouse, 17-19 July 2013



Background

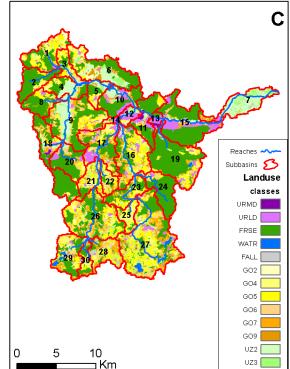
- Aquatic eutrophication caused by excessive nutrient loads transported by rivers to sea waters is now the primary environmental issue related to the Baltic Sea
- Poland's share of the generated load (originating mainly from agricultural diffuse sources) is assumed as the largest among the Baltic states (HELCOM)
- Stimulus for implementing measures preventing diffuse pollution is coming not only from the EU Directives but also from the Baltic Sea Action Plan (country-specific reduction targets)

The Algae situation

This study, set in a small coastal watershed in Poland, has 2 objectives:

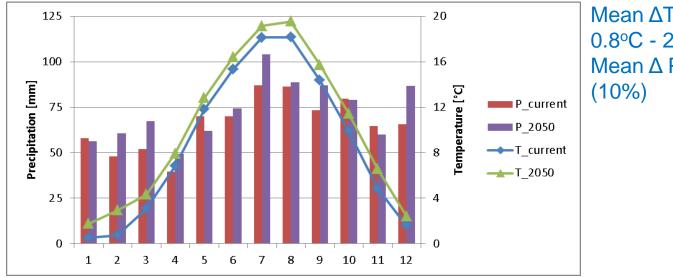
- To quantify nutrient loads discharged to the sea under future climate and land use change scenarios until 2050
- To estimate the effect of agricultural adaptation measures aimed at nutrient load reduction under future conditions

Several recent studies at the Baltic Sea Basin scale (Arheimer et al. 2012; Meier et al. 2012) had similar goals, but there is a need for a smaller-scale catchment studies with more physically-based models



Study area: The Reda watershed

- SWAT2009
- 50m resolution DEM
- Delineation into 30 subbasins
- Corine Land Cover map 13 classes of land use
- Soil maps 17 classes of soils
- 465 HRUs
- Precipitation data from 5 stations, and other climate variables from 4 stations



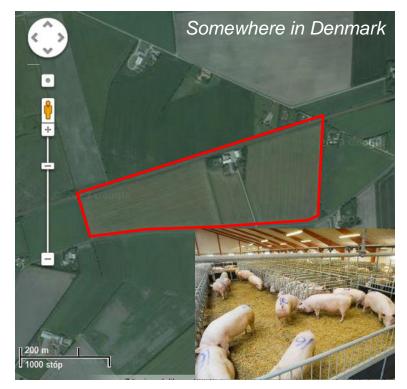
- Management practices based on detailed communelevel data and interviews with agricultural extension services
- SUFI-2 algorithm applied for model calibration

Climate change projections for 2050s

- Precipitation and temperature projections from the ECHAM5-RCA3 RCM driven by A1B GHG emission scenario (SMHI)
- Delta change approach (monthly change factors representing the future time slice)
- Atmospheric CO₂ increased by 50% (A1B scen.) => impact on actual ET

Mean Δ T 1.3°C (range 0.8°C - 2.2°C) Mean Δ P 80 mm (10%)

- Two main drivers in land use change are urban land cover change and agricultural land use change
- Urban => one scenario based on population growth projections
 - Urban sprawl of the cities
 - Conversion of marginal land in rural areas into low density residantial land cover (URLD)
- **Agricultural** => two scenarios
 - Business-As-Usual (spontaneous development)
 - Major Shift in Agriculture (rapid intensification)
 - Current Danish agriculture set as the model to which Poland will converge

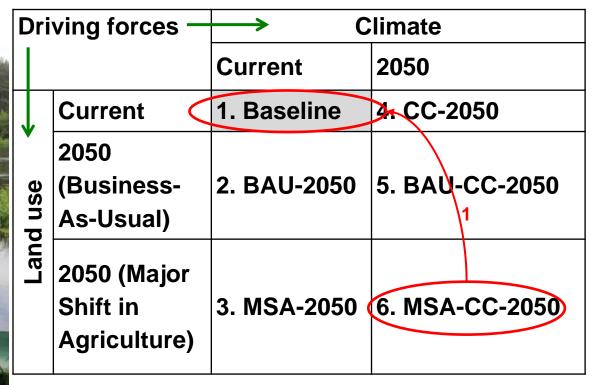

Agricultural land use change scenarios

Business-As-Usual scenario

 Traditional (extensive), oriented on own farm needs (driven by local socio-economic conditions and EU policies)

Major Shift in Agriculture scenario

 Intensive, export-oriented (driven by global food demand)



Agricultural land use change scenarios

Scenario feature	Business-As-Usual (BAU-2050)	Major Shift in Agriculture (MSA-2050)		
Population density	Increase by 32% (~200 pers/km ²) compared to 2011 => URLD area			
	increased by 30%			
Urban population	Decrease from 58% in 2011 to 56% in 2050			
Type of agriculture	Traditional (extensive), oriented on	Intensive, export-oriented (driven by		
	own farm needs	global food demand)		
Crop structure (%	Spring Cereals 36%	Spring cereals 48% (+)		
of agricultural land)	Winter cereals 17%	Winter cereals 2% (-) Grassland 17% (-)		
	Grassland 26%			
	Potatoes 9%	Potatoes 3% (-)		
	Corn silage 2%	Corn silage 10% (+)		
	Other 10%	Other 20% (+)		
Livestock density	0.56 LSU ha ⁻¹	1.43 LSU ha ⁻¹ (+150%)		
Fodder source	Locally produced fodder	Imported fodder		
Fertilizer rates	Average: 37 kg N ha-1, 12 kg P	Average: 102 kg N ha-1, 53 kg P ha-1		
	ha ⁻¹ (mainly mineral fert.)	(mainly slurry and manure)		

Experimental design (core scenarios)

- Design enables to distuinguish between climate and land use change effects
- Indicators comparing scenarios 2-6 with the baseline (1)

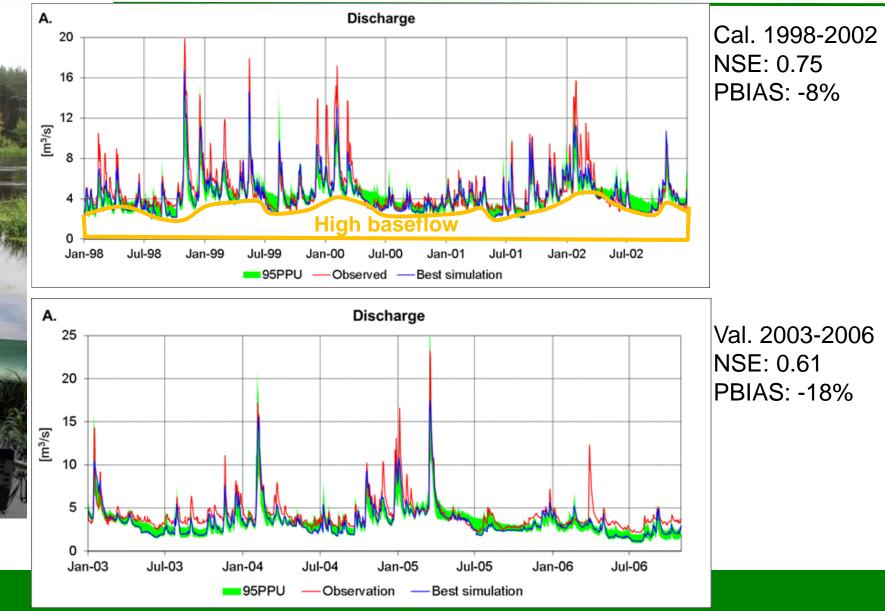
Measures selected with stakeholder participation based on the list of prioritized measures elaborated by the Baltic COMPASS project (<u>http://www.balticcompass.org/</u>)

1. *Vegetative cover in autumn and winter* (VC) – defined in ca. 50% of agricultural land. Rye and red clover were used as cover crops.

2. Buffer zones along water areas (BZ) - the Vegetative Filter Strip sub-model was applied in all agricultural land HRUs.

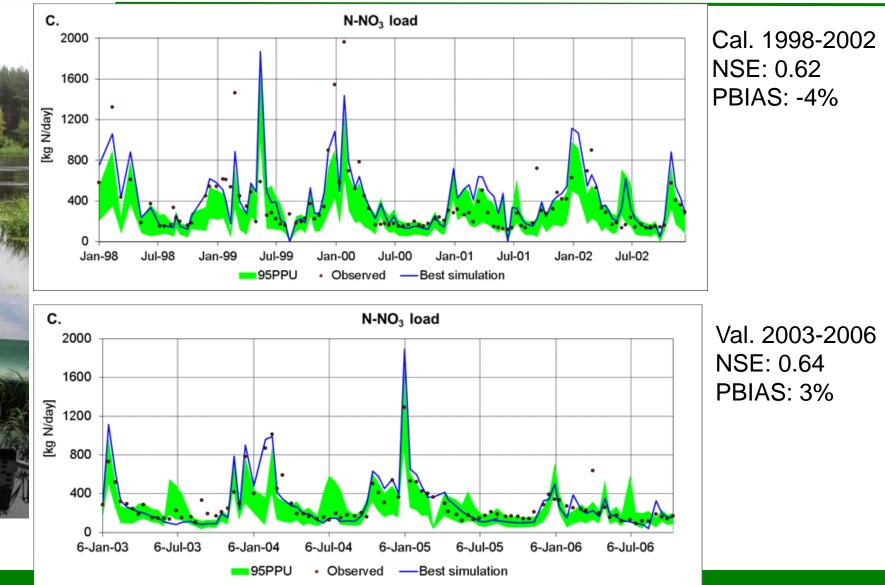
3. Avoiding fertilization in risk areas (RA) – fertiliser rates reduced by 50% in HRUs with agricultural land use that satisfied at least one of the following conditions: (1) slopes > 10%; (2) existing drainage ditches; (3) heavy soils.

4. Constructed wetlands for nutrient reduction/retention (CW) – wetlands activated in all sub-basins with a share of agricultural land use above 50%

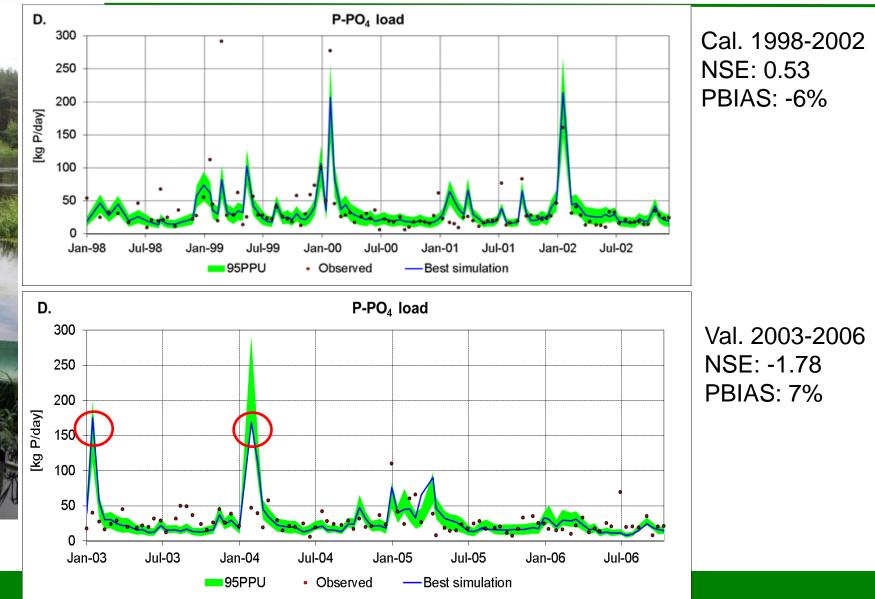

Experimental design (adaptation scenarios)

Γ	Dri	ving forces —	es> Climate		
			Current	2050	2050 + Adaptation measures (BMPs)
Land use	↓	Current 🤇	1. Baseline	★. CC -2050	
		2050	2. BAU-2050	5. BAU-CC-2050 3	7. BAU-CC-2050 + VC
		(Business-			8. BAU-CC-2050 + BZ
	Se	As-Usual)			9. BAU-CC-2050 + RA
		A3-03001j			10. BAU-CC-2050 + All
	an	2050 (Major Shift in Agriculture) 3. MSA-2050			11. MSA-CC-2050 + VC
				6. MSA-CC-2050	12. MSA-CC-2050 + BZ
			3. MSA-2050		13. MSA-CC-2050 + RA
					14. MSA-CC-2050 + CW
					15. MSA-CC-2050 + All

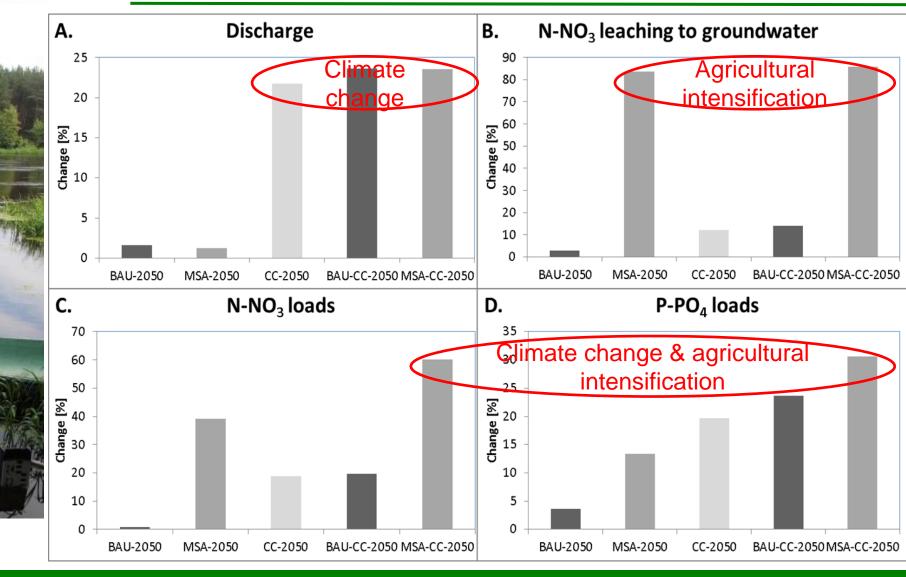
VC – vegetative cover in autumn and winter; BZ – buffer zones;
RA – reducing fetilisation in risk areas; CW – constructed
wetlands



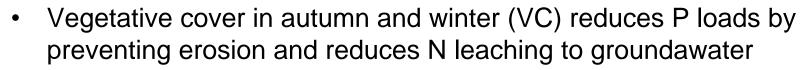
Calibration & validation of daily discharge



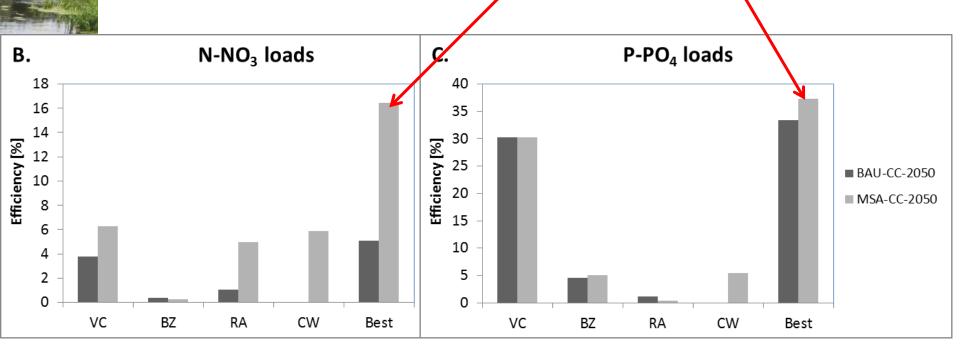
Calibration & validation of bi-monthly N-NO₃ loads



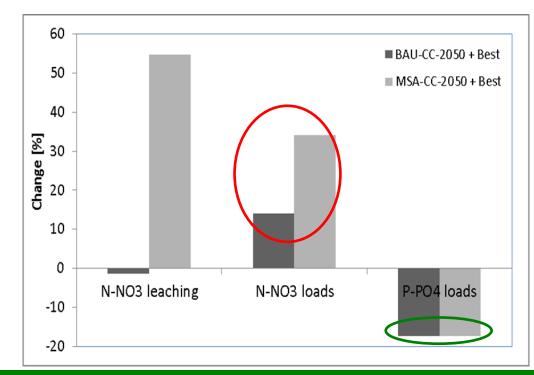
Calibration & validation of bi-monthly P-PO₄ loads

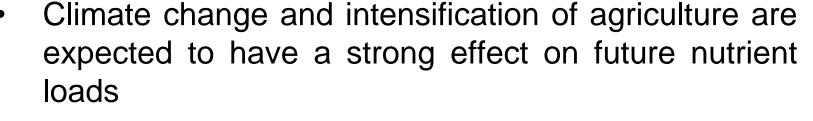


Scenario results: Percent changes with respect to the baseline



Scenario results: Efficiency of selected adaptation measures under future scenarios


- Low efficiency (up to 6%) of buffer zones (BZ), reducing fertilisation (RA) and constructed wetlands (CW)
- Max. efficiency under MSA 16% for N-NO₃ and 36% for P-PO₄


Percent change between "best combination of measures under future scenarios" and the baseline

- For N-NO₃ loads even the best combination of measures would not help to remediate the negative effects caused mainly by climate change and by agricultural intensification
- Nutrient dominant transport pathways playing the key role (leaching / sorption to sediment)

Conclusion

- Urban land cover change driven by urban sprawl has little effect on future nutrient loads
- Intensification of agriculture under MSA-2050 will cause major deterioration of water quality, but will bring economic profit in the form of crop yields increased by 31%
- Cover crops would be the most efficient adaptation measure in 2050s, while other measures would have little efficiency

- Further reading
 - http://www.climate-impacts-2013.org/files/wism_gielczewski.pdf
 - Piniewski, M., Kardel, I. Giełczewski, M., Marcinkowski, P., Okruszko, T. 2013. Climate change and agricultural development: Adapting Polish agriculture to reduce future nutrient loads in a coastal watershed. *Ambio* (under review).
- Acknowledgements
 - Baltic COMPASS project

BALTIC CØMPASS

- Henrik Eckersten, Sirkka Tattari, Christen Borgesen
- Institute of Meteorology and Water Management Marine Branch in Gdynia, Institute of Technology and Life Sciences in Falenty, Pomeranian Agricultural Advisory Board in Gdańsk

Thank you!

2013 International SWAT Conference. Toulouse, 17-19 July 2013