Nonpoint Source Pollution Control Programs: Enhancing the Optimal Design Using A Discrete-Continuous Multiobjective Genetic Algorithm

> Mehdi Ahmadi Mazdak Arabi

2013 SWAT Conference

Toulouse, France

Colorado State University

Nonpoint Source Pollution

- Agriculture is among leading contributors to water quality impairments in the U.S. and around the world
- Control of agricultural NPS pollutants can be achieved through implementation of conservation practices, commonly known as best management practices (BMPs)
- Strategies for implementing conservation practices
 - Cost-share programs: a field-scale approach
 - Targeting critical areas within the watershed
 - Critical source areas
 - Scenario analysis
 - Optimization

Implementation of Conser. Practices

- Cost-sharing with land owners and producers
 - Does not guarantee maximum water quality benefits at the watershed scale
- □ Targeting using expert recommendations
- Targeting critical areas using geospatial characteristics of areas within the watershed, e.g., soil-topographic index
 - Important watershed processes and interactions amongst practices are not considered

Targeting Using Scenario Analysis

- Full enumeration and evaluation of all possible scenarios may be infeasible even at HUC 12 or similar scales.
- Employing optimization algorithms can facilitate identification of optimal suites of BMPs that reduce pollutant load at minimum cost.
- Multi-objective approaches can expose tradeoffs between often conflicting environmental, socioeconomic and institutional criteria.

3

Simulation-Optimization Approach

- Binary-variable optimization
- Discrete-variable optimization
- Continuous-variable optimization
- Mixed discrete/continuous-variable optimization

Study Objectives

- To develop a novel heuristic multiobjective optimization method using mixed discrete/continuous decision variables
- To determine improved assessment of environmental and economic tradeoffs using a mixed-variable optimization method compared to a binary optimization approach
- To examine enhanced convergence of the optimization approach by hybridization

Study Area

Eagle Creek Watershed (ECW), Indiana

Drainage area: 41.2 km²

Ô

RA

Calibration and Testing

- □ Simulation model: SWAT
- Special attention was paid to accurate representation of hydrologic and water quality processes

Gauging		Calibration (199:	Period (5-1999)	Criteria	Evaluation I (2000	Period ()-2004)	Criteria
Station	Variable	PBIAS (%)	\mathbb{R}^2	NSE	PBIAS (%)	R ²	NSE
20	Monthly Nitrate	7.9	0.94	0.83	16.9	0.85	0.67
	Monthly Atrazine	-6	0.81	0.34	-14	0.7	0.41
22	Monthly Nitrate	-22.3	0.89	0.78	1.24	0.74	0.36
	Monthly Atrazine	42	0.69	0.44	-0.1	0.5	0.28
27	Monthly Nitrate	0.59	0.93	0.85	18.3	0.78	0.59
	Monthly Atrazine	13	0.66	0.35	-30	0.51	0.19
32	Monthly Nitrate	-7.9	0.92	0.84	8.4	0.76	0.55
	Monthly Atrazine	42.3	0.75	0.52	33.1	0.51	0.14
35	Daily Streamflow	-12.2	0.78	0.61	4.3	0.78	0.56

Multiobjective Optimization

- Method: Modified Nondominated Sorted Genetic Algorithm II (NSGA-II)
- Objective functions

 $\begin{cases} \text{minimize } y = f(\mathbf{x}|\boldsymbol{\theta}, I, t_d, T) & ; \text{Pollutant load}(s) \\ \text{minimize } C = g(\mathbf{x}|\boldsymbol{\theta}, I, p, r, t_d, T); \text{Cost}(s) \end{cases}$

Constraint functions {Chance opf adoption {Management considerations

Ø

Economic Component: Cost

$$C = C_0 + r_{OM} \times C_0 \left(\frac{1 - (1 + i)^{-t_d}}{i} \right) + C_{OP}$$

 C_0 : implementation cost

 r_{OM} : maintenance cost as a percentage of C_0

i: interest rate/100

 t_d : design lifetime of the conservation practice (years)

 C_{OP} : opportunity cost (eg. loss of crop production), expressed as

$$C_{OP} = \sum_{k=1}^{K} r_k \beta_k$$

K: number of fields

 r_k : unit price of crop in field k

 β_k : changes in crop production

Ø

Mixed-variable optimization

	Field 1	Field 1	Field 1	•••	Field K	Туре
Practice 1	0 1	0 1	0 1		0 1	Binary
Practice 2	0 1	0 1	0 1		0 1	Binary
Practice 3	0 1 2 3	0 1 2 3	0 1 2 3		0 1 2 3	Discrete
Practice 4	0-20	0-20	0-20		0-20	Continuous

ð

Representation of Conservation Practices

BMP	Parameter	Binary-variable	Mixed-variable
Fertilizer Management	Application rate reduction (%)	20	0-30 (Continuous)
Grassed Waterways	Width (m)	15	10, 15, 25 (Discrete)
Grade Stabilization	Height (m)	1.2	1.2 (binary)
Tillage/Residue management	Туре	Conservation	Conventional Conservation No-till (Discrete)

6

Optimization Operation Parameters

- Population size = 100+
 - Parallel runs
- **Crossover probability = 0.5**
- Mutation rate = 0.005
- Termination conditions: 30 consecutive runs with less than 0.01% improvement in objective function values and decision space

Ô

R

Results

- Mixed-variable approach improved load reduction by 20-25%
- Mixed-variable approach identified solutions with up to 40% lower cost for the same level of pollutant load reduction as compared to the binary-variable approach

environmental Risk Assessment & Management System (eRAMS)

Convergence

Ô

Ô

Hybridization

- Hybridization of modified GA with gradient-based local search method
 - **GA-based optimization methods guarantee** "convergence" but not "optimality"
 - **Does not work with discrete-variables problems**

RA

Enhanced Convergence by Hybridization

- The Hybrid method
 terminated in 66
 generations after the
 binary optimization
 solutions were identified
- Nearly 30 times faster
 than the mixed-variable
 NSGA-II

Ô

Comparison of the objective space

 Lebesgue measure (*n*-dimensional volume)

Algorithm	Lebesgue Measure
Binary	4.54×10 ⁸
Mixed	5.71×10 ⁸
Hybrid	5.78×10 ⁸

Ô

Ø

E

Spatial Distribution of Practices

E

Additional Notes

Priority BMPs

- 1. Grassed waterways
- 2. Fertilizer management
- 3. Residue/tillage management

Tillage/residue management had inverse impact on nitrate load in most of the fields and received the lowest priority

Conclusion

- Tradeoffs between maximizing environmental benefit/load reduction and minimizing Costs are apparent, hence, multi-objectve optimization is an effective tool for prioritization of fields and practices on a HUC 12 or similar scales
- Mixed-variable optimization identified better solutions than binary-variable approach
- Hybrid algorithms can significantly decrease runtime for complex discrete-continuous optimization problems