

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

SWAT plant growth modification for improved modeling of tropical vegetation

Michael Strauch

Martin Volk

2013 International SWAT Conference & Workshops - Toulouse, France

Paul Sabatier University, July 17-19, 2013

SWAT is increasingly used in the tropics...

...but it was developed for temperate regions! ...critical evaluation of processes is often missing!

Plant growth of perennials (e.g. savanna)

Cerrado s.s.

Mata ciliar / Mata de galeria

L'astan

Plant phenology is driven by precipitation

300

Plant growth & water balance in SWAT

Water balance:

$$SW_t = SW_0 + \sum_{i=1}^{t} (R - Q - ET - P - QR)$$
 (1)

Calculating PET using Penman-Monteith:

Influence of LAI:

$$\lambda E = \frac{\Delta \cdot (H_{net} - G) + \rho_{air} \cdot c_p \cdot [e_z^o - e_z] / r_a}{\Delta + \gamma \cdot (1 + r_c / r_a)}$$
(2)

$$r_c = r_\ell / (0.5 \cdot LAI)$$
 (3)

... assuming each parameter in (2) and (3) except LAI is constant with a value of 1

LAI calculation (default)

Fraction of potential heat units to reach maturity

LAI calculation (modified)

Adaptation I: Transition between 'growing seasons'

Page 11

MethodsReference data for plant phenology

MODIS LAI and ET estimations (collection 5 data)

- 1 km x 1 km, 8 day intervals
- o since year 2000

Reference data for plant phenology

LAI MOD15A2

Myneni et al. (2002)

https://lpdaac.usgs.gov/

ET MOD16A2

Mu et al. (2011)

http://www.ntsg.umt.edu/

Example Cerrado (savanna):

BISE: 'Best Index Slope Extraction' (Viovy et al. 1992) using R-package 'phenex'

(Lange and Doktor, 2013)

Simulated LAI and ET, (example) Cerrado

Conclusions

- Tropical vegetation dynamics <u>can hardly be represented</u> in SWAT (default model)
 - (e.g. no dormancy in the tropics)
- Tropical vegetation dynamics <u>can be reasonably represented</u> in SWAT when triggered by soil moisture at the end of the dry season (soil moisture approach is simple, but process-based)
- Remote sensing data (e.g. MODIS LAI and ET) can be useful for model evaluation (multi-objective calibration!)
- Plant growth module modifications affect...
 ... simulations in the tropics (soil moisture approach), but also
 ... simulations in general (logistic LAI decline rate)
 and might be useful for large parts of the SWAT community!

Thank you!

Questions? Comments?

Page 17

Initial tests...

a) IGRO = 1 (vegetation is growing), no management schedule
b) Management schedule: "plant" at FR_{PHU} = 0.1,"kill" at FR_{PHU} =0.925
c) Management schedule: "plant" at Sep 1,"kill" at = Aug 31

Page 19

Page 20

Table 4: SWAT parameters used for LAI, ET, and streamflow (Q) calibration

			Calibrated values		
Parameter	Calibrated		(initial values)		
(model file)	output	Parameter description	Campo	Cerrado	Mata
ALAI MIN (crop.dat) LAI	Minimum leaf area index for plant (LAI _{MIN} , m ² /m ²)	0.7	0.7	1.35
			(-)	(-)	(0.75)
BIO_E(crop.dat)	IAI	Radiation-use efficiency ((kg/ha)/(MI/m ²))	20	20	20
2.0_2 (0.0p.000)	2		(34)	(34)	(15)
BLAL (crop dat)		Maximum notential leaf area index (m²/m²)	21	23	35
bbai (crop.dat)	5	maximum potentianear area maex (m /m /	(2.5)	(2)	(5)
DI Al (grap dat)		Fraction of PULL when LAL begins to decline	(2.5)	(2)	(-)
DLAI (Crop.dat)	LAI	Fraction of PHO when LAT begins to decline	0.38	0.34	0.55
			(0.35)	(0.35)	(0.99)
FRAWC (crop.dat)	LAI	Fraction of available water capacity when plants begin	0.1	0.1	0.1
		growing season in tropics	(-)	(-)	(-)
FRGRW1 (crop.dat)	LAI	Fraction of PHU corresponding to the 1st point on the	0.07	0.07	0.07
		optimal leaf area development curve	(0.05)	(0.05)	(0.15)
FRGRW2 (crop.dat)	LAI	Fraction of PHU corresponding to the 2nd point on the	0.4	0.4	0.5
		optimal leaf area development curve	(0.25)	(0.25)	(0.25)
GSI (crop.dat)	ET	Maximum stomatal conductance at high solar radiation	0.0008	0.0010	0.003
		and low vapor pressure deficit (m/s)	(0.005)	(0.005)	(0.002)
LAIMX1 (crop.dat)	LAI	Fraction of BLAI corresponding to the 1st point on the	0.15	0.15	0.15
		optimal leaf area development curve	(0.1)	(0.1)	(0.7)
(AIMX2 (crop dat)	1 4 1	Fraction of BLAL corresponding to the 1st point on the	0.95	0.95	0.95
Enninz (cropidac)		ontimal leaf area development curve	(0.7)	(0.7)	(0.99)
T BASE (grop dat)		Minimum tomporature for plant growth (°C)	10	10.77	10
I_BASE (crop.uar)	LAI	winind in temperature for plant growth (C)	(12)	(12)	10
		Manage and the first (LD-) as an adding the start	(12)	(12)	(0)
VPDFR (crop.dat)	EI	vapor pressure deficit (kPa) corresponding to the	1	1	1.6
		second point on the stomatal conductance curve	(4)	(4)	(4)
EPCO (*.hru)	ET	Plant uptake compensation factor	0.25	0.25	1
			(0)	(0)	(0)
ESCO (*.hru)	ET	Soil evaporation compensation factor	0.9	0.9	0.01
			(0.95)	(0.95)	(0.95)
GW_DELAY (*.gw)	Q	Groundwater delay time (days)	120	120	10
			(31)	(31)	(31)
GWQMN (*.gw)	Q	Threshold depth of water in the shallow aquifer	100	100	100
		required for return flow to occur (mm H2O)	(0)	(0)	(0)
GWREVAP (*.gw)	FT	Groundwater "revap" coefficient	0.2	0.2	0.8
· · · · · · · · · · · · · · · · · · ·			(0.02)	(0.02)	(0.02)
REV/ADMAN (* mw)	FT	Threshold denth of water in the shallow aquifer for	101	101	1
NEVAPININ (.gw)	E1	"reven" to occur (mm H2O)	(1)	(1)	(1)
CN/23 (* mgt)	0	Initial SCS support support and a support of the support	(1)	(4)	(4)
C/V2* (*.mgt)	ų	initial SCS runoff curve number for moisture condition if	40 [80]	44 [64]	33 [82]
D			(41 [81])	(39 [79])	(30 [77])
PHU_PLI (*.mgt)	LAI	lotal number of heat units or growing degree days	4300	4300	4300
		needed to bring plant to maturity	(1800)	(1800)	(1800)
CH_K2 ^o (*.rte)	Q	Effective hydraulic conductivity in main channel	105		
		alluvium (mm/hr)	(0)		
CH_N2 ^b (*.rte)	Q	Manning's "n" value for the main channel	0.1		
			(0.014)		
^a CN2 values for Hydrologic Soil Group A [and D], both Soil Groups are occurring in the study area					

b Non-specific for land cover type

