Which parameter complexity is required for a sound simulation of agricultural river basins?

Investigating SWAT model sensitivity to agricultural land cover and crop rotation parameterizations

Felix Witing, Martin Volk

2013 International SWAT Conference Paul Sabatier University, Toulouse, 17. - 19.07.2013

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

Agricultural land:

- Very <u>high Input (N, P, management practices)</u>
- Highly <u>complex & dynamic</u> system (cultivated crops, crop rotations, management practices..)

Objective

 Develop a strategy for the spatial & temporal parameterization of agricultural land cover in SWAT

Study Area

Saale & Mulde catchment area :

Very heterogeneous landscape:

- Area: ~ 31.000 km²
- Precipitation: <350 to >1300 mm/a
- Elevation: 55 to >1200m
- **Soils:** Loess (partly black) soils, sandy soils, residual soils
- Agricultural land: >60%

Important steps for cropland parameterization

- 1. Develop a **regional differentiation** of management systems (esp. in large catchments)
- 2. Develop a 'typical' management for every crop:
 - Management operations
 - Management details (fertilizers, tillage systems..)
 - Management timing
- 3. Spatial distribution of crops according to the crop-cultivation statistic / areal share of each crop (e.g. using HRU-Split)
- 4. Implementation of crop rotations:
 - Develop a strategy for generalization of crop rotations applied in the catchment

		[%]	Average N-	e N-Demand [kg/ha]		
Winter w	vheat	36		190		
Winter r	ape	20		200		
Winter b	arley	12		140		
Silage ma	aize	10		190		
Spring ba	arley	8		110		
Ley grass		5		250		
Winter rye		5		120		
Sugar beet		4		170		
	Ен	гімн	01T7 ir	n cooperation with		

ONMENTAL

EARCH – UFZ

DBF

Why is it important to include (realistic!) crop rotations into your model?

Modeling effects of crop-rotations (HRU-level)

- Example analysis:
 - Winter Wheat cultivation, differing preceding crop:

- <u>Identical HRU:</u> identical soil, slope, climate, same year of model run, etc.
- Identical management of the individual crops
- Different crop-rotations
- Analyzing output.hru + output.sol

Modeling effects of crop-rotations (HRU-level)

Winter wheat (Ww) growing season:

Impact of the preceding crop on the output of 1 HRU:

in cooperation with

DBF2

IRONMENTAL EARCH – UFZ

- \rightarrow More N in the soil after winter rape
- \rightarrow Better yield of winter wheat after winter rape
- \rightarrow But also more nitrate leaching

Modeling effects of crop-rotations (HRU-level)

Winter wheat (Ww) growing season:

Impact of the preceding crop on the output of 1 HRU:

Using realistic crop rotations can be essential for capturing the right model dynamics.

What do we have to consider when choosing crop rotations for the implementation into our SWAT-model?

Selection & Combination of crop rotations

Imaginary setup:

- 3 different crops, known cultivation statistic
- <u>using actually practiced crop-rotations</u> for HRU-Split

	[%] / Year of simulation	1		2		3
HRU 1	33%	Crop A	\rightarrow	Crop B	\rightarrow	Crop C
HRU 2	33%	Crop B	\rightarrow	Crop C	\rightarrow	Crop A
HRU 3	33%	Crop C	\rightarrow	Crop A	\rightarrow	Crop B

. . .

HRU 4	(50%)	Crop A	\rightarrow	Crop D
HRU 5	(50%)	Crop D	\rightarrow	Crop A

Depending on the number of rotations taken into account:

- increasing amount of HRUs
- decreasing failure in the areal share of the crops

Selection & combination of crop-rotations

How do we choose suitable crop rotations? Objective: realistic, but as less complex as possible

Expert knowledge, environmental state offices, Stakeholder.. In our

> 100

approach :

Pool size:

differentiated

by farm type

Short crop

a better

LTZ

FOR

RESEARCH – UFZ

weighting

rotations get

in cooperation with

DBF2

Pool of crop rotations (regionally differentiated & actually practiced)

Choose necessary complexity (e.g. 1 – 4 crop rotations) according to the simulation demands

Combing all crop rotations with each other and **calculate average error** to actual cultivation statistic

Choose crop-rotation-combination, with the least

average error

Selection & combination of crop-rotations

Example for 1 management area:

Statistic:

Selected crop rotations:

	[%]	Error [%]
Winter wheat	36.2	2.2
Winter rape	20.4	1.2
Winter barley	12.5	0.0
Silage maize	9.6	1.3
Spring barley	7.6	2.6
Ley grass	4.9	0.8
Winter rye	4.9	0.1
Sugar beet	3.9	1.1

[1,] [2,] [3,]	Winter rape Winter wheat Winter wheat	[1,] [2,] [3,]	Silage maize Winter wheat Winter barley
[1,]	Sugar beet	[1,]	Winter wheat
[2,]	Winter wheat	[2,]	Ley grass
[3,]	Spring barley	[3,]	Winter rape
[4,]	Winter rape	[4,]	Winter wheat
[5,]	Winter rye	[5,]	Winter barley
		[6,]	Winter rape

→ <u>Afterwards</u>: bringing crop rotations & management for every crop together for *.mgt parameterization of HRUs

Short Digression

General strategy on cropland parameterization

Study Area – Testing of land-cover strategies

Striegis catchment area :

- Area: ~ 283 km²
- Precipitation: 820 to 960 mm/a
- Elevation: 185m to 590m
- Soils: Loess soils, residual soils (mixed with loess)
- Agricultural land: 74%

HELMHOLTZ in cooperation with CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Modeling effects of crop rotations

Strategy	1	2	3
Correct <u>cultivation statistic</u> in every year of simulation	yes	no	yes
Use of realistic crop rotations	no	yes	yes

<u>Strategy 1:</u> HRU-Split using crop-cultivation statistics, No use of crop-rotations

<u>Strategy 2:</u> use of <u>1</u> realistic crop rotation, but due to that: variations from the actual cultivation statistic

Strategy 3: 4 realistic crop rotations are combined

in cooperation with

DBFZ

Modeling: Basin-level comparison of strategies

Conclusion

- SWAT has an high sensitivity regarding crop rotations.
 Especially, with regard to sediments, crop yield & nutrient cycles.
- It is complex to account for crop rotations and cultivation statistics at the same time during SWAT-model setup, but we showed a possible strategy of dealing with that.
- If the purpose of modeling is analyzing the catchments hydrology, than crop rotations seem not that important.

Outlook

- Investigate the effect of the different strategies in large catchments (Saale & Mulde).
- Investigate the effect of the different strategies model calibration and management scenarios.

Thank you!!

HELMHOLTZ in cooperation with CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ