

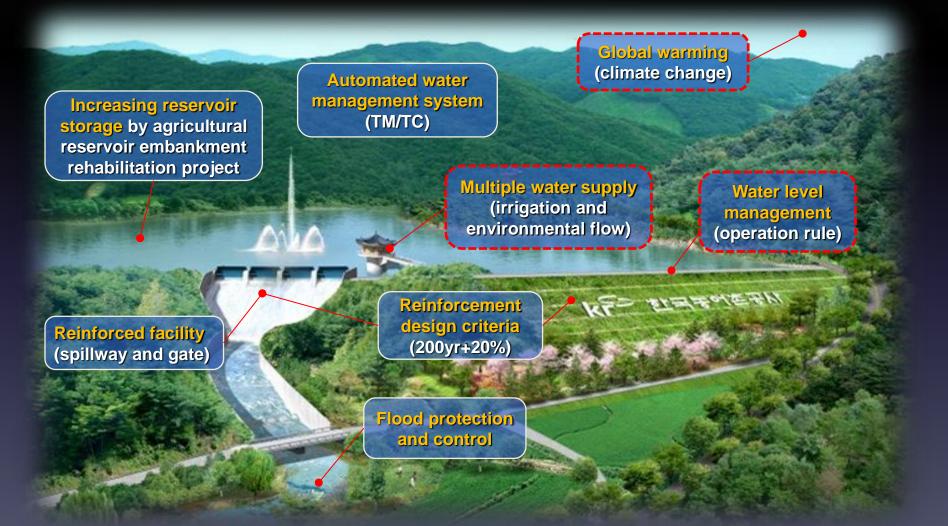
Improvement and Application of SWAT Model for Irrigation Water Supply in Agricultural Reservoir of South Korea

July 18, 2013

Jong-Yoon Park / Rim Ha / So-Ra Ahn / Sang-Ho Kim / Seong-Joon Kim*

Earth Information Engineering Laboratory Department of Civil and Environmental System Engineering Konkuk University, Republic of Korea

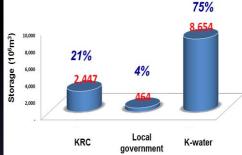
Outline

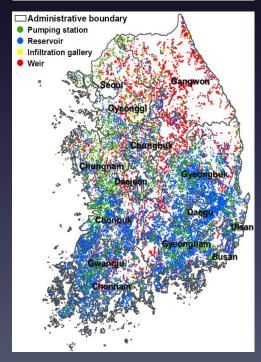

1. Background

2. SWAT Improvement

- Irrigation water requirement model (IWRM)
- Improvement of SWAT2009 reservoir module
- Modeling approach
- 3. Study Area and Data
- 4. SWAT Application
 - Evaluation of agricultural reservoir operation
 - Model calibration and validation
 - Applications to climate change adaptation and new opportunity
 - rice phenology, storage reallocation, operating rule curve, environmental flow
- 5. Concluding Remarks

Key issue


Changing paradigm in water management of agricultural reservoir



Background

Key issues in our agricultural water resources can be summarized as follows:

- South Korea has a high dependency on fresh water resources such as reservoirs and lakes.
- <u>Climate change</u> will affect Korean water resources through its impact on the quantity, variability, timing, form, and intensity of precipitation.
- In terms of agriculture, climate change will affect irrigation water demand of rice via changes in rice physiology and phenology, soil water balances, evapotranspiration, and effective rainfall.
- The agricultural reservoir needs a new operation strategy and water management for the both irrigation water and <u>environmental flow.</u>
- In order to assess the climate change impact on watershed hydrology, <u>integrated watershed models</u> <u>such as SWAT</u> are needed to apply irrigation systems by reservoir operation.

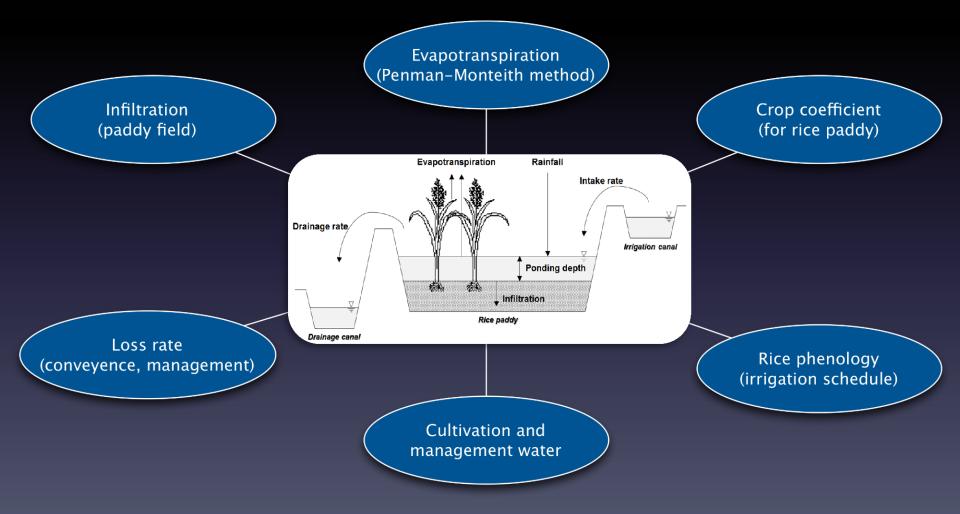
Objective

✓ SWAT2009

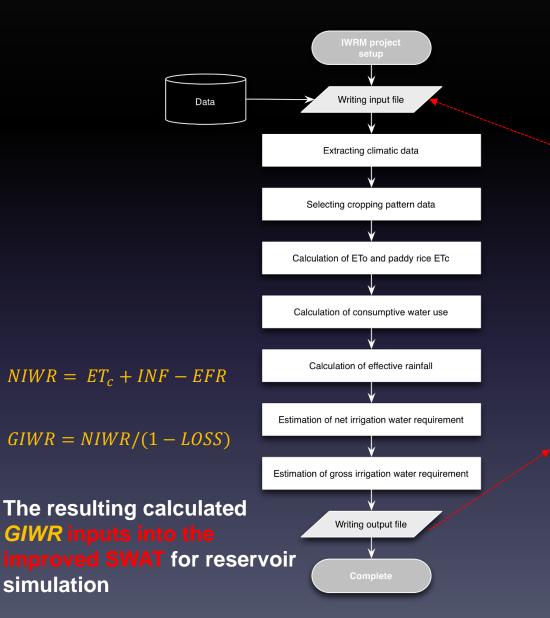
- Using the study case of an agricultural reservoir watershed, it was shown that the current original SWAT2009 version is not able to appropriately evaluate the reservoir performance in such a system when it worked as a multiple purpose to supply water for irrigation and environmental flow
- Application of the original version in agricultural reservoir watersheds using farmer's irrigation practices was not possible because the excess irrigation depths are returned to the stream through the drainage canal system

✓ The purpose of this study is...

 to add the reservoir simulation option in the current reservoir simulation module of the SWAT2009 version for correctly simulating the <u>multiple</u> <u>water supply</u> system of agricultural reservoir based on operating rule


IWRM development

✓ Irrigation Water Requirement Model (IWRM)


- IWRM was developed for the purpose of calculating the <u>daily</u>-<u>based irrigation water requirement</u> in rice paddy fields.
- IWRM is a <u>computer program</u> for the calculation of crop water requirements and irrigation requirements <u>based on climate, crop</u>, <u>soil, and water loss condition</u>.
- The program allows the development of irrigation schedules for different management conditions and the calculation of scheme water supply for varying crop patterns.
- IWRM can also be used to evaluate farmers' irrigation practices and to estimate crop performance under both irrigated and partially irrigated conditions.

IWRM components

Irrigation water requirement in paddy fields

IWRM simulation

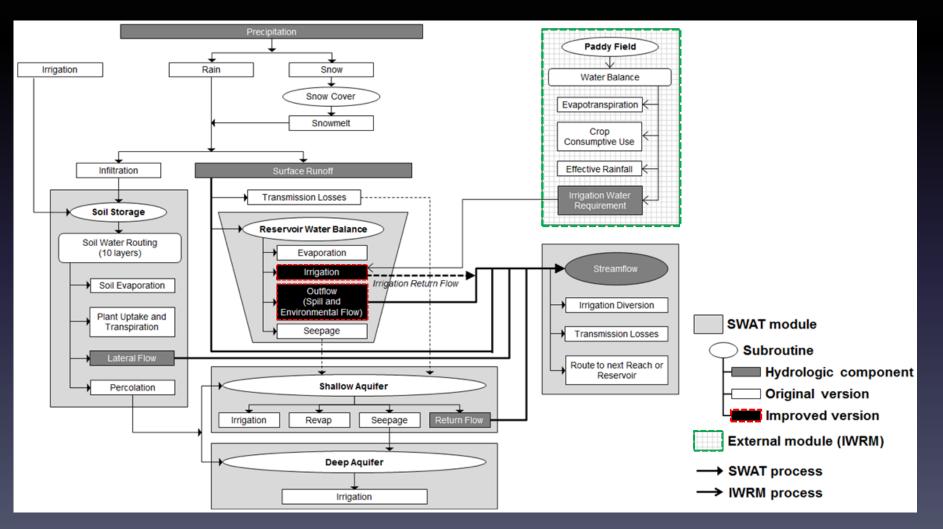
Project Name	Gosam_vI		Us	er inte	rface
Period of Simu	ulation				
Starting yea	ar 1996 Ending ye	ear 2011			
Weather Statio	'n				
Name	Suwon				
Longitude in	n decimal degrees 126,98	Latitude in declami	degrees 37,27		
Elevation of	weather station (EL,m) 34,5				
Elevation of	wind speed gage (m) 20,0				
Observed da	ata		_		
E:WMET_G	iosam_1996_2011,csv(
				Next	

UltraEdit-32 - [E#00PAPER#00THESIS#01_PHD#01_AnalysisProcess#05_trrigationWaterRequirement#01_GOSAM#CalibrationPeriod_v3_1992_2012_20130220#.															
🚺 파일(E) 편집(E)	검색(5)	프로젝	트(<u>P</u>)	보기(V) 사	해식(D) 열(L) 매크로	(M) 고급(A) 창(W) 도움말(는	D				- 8	x
🔶 🔶 🗅 😂	ំ 🔒	ë [à. 🤹	W.) E	差 暭	8	8.8			• M	M M	🖻 🚵 🗏 🖽 🖞	8 👌 🕈	₩?
IWRM_INDATA_G	iOSAM, INP	save	e,txt+												
	<u> </u>														_
<u> </u>	> 수리 관개	안전1	굽 이 이	강재배 집	별요수량 .800 ha	산경 분	석조건								-
,	묘대:	7]		4월17	일 - 5	월31일									
파일 열기 💌	묘대	정지	:	· 4월17 5월21	<u>ହ</u> ାଁ - 4	월20일							Text	fila	
월 열기	이앙: 본답;	7	-	5월21 2월11	일 - 6 일 - 9	월10일 월110일							Ιθλί		
E:#00PAPER#00THE	최대	남수(1		.000 mm	5115									
E:#IWRM_INDATA_G	최대 최소 최소 묘대	탐수(1 :		.000 mm										
	취소'	방류력 데 제 비	양 : 비율 :		.000 mm,	/ha									
	옷자?	리유석	신원 :		.000 *										
	이양- 논삼4	용춘			.000 mm										
	논삼· 수로:	투량	-		.200 mm	/d									
	<u> </u>	는'겉 계수	-	PENMAN	.000 %										
	1 2	1/÷	1월	2월 3	월 4월				9월 10*						
	성	순							1.32 0.0						
	२ स								1.32 0.0						
	'	_													
	년,월,	일,1	릴,잠?	대중발, (날게중발.	,강우,소	는비수량,	당수심	,유효우	량,순용	수량,조	봉수량,	필요수량(천M3)		
	1992	1 1	1	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	1992	1 2		0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	1992 1992	1 3		0.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	1992	1 5		0.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	1992	1 6		0.75	0.00	5.50	0.00	0.00	0.00	0.00	0.00	0.00			
	1992 1992	1 7		0.91	0.00	3.20	0.00	0.00	0.00	0.00	0.00	0.00			
	1992	1 9		0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	1992	1 10		0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
	1992 1992	1 11 12		0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
		1 12	. 12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			-
< >	4														•
도움말은 F1을 누르세	8	_				줄 2	9, 열 79, C	0	DOS	-	수정: 2013	-03-03 8:5	54:085 파일 크기: 6146	39 삽입	1
_															

SWAT improvement

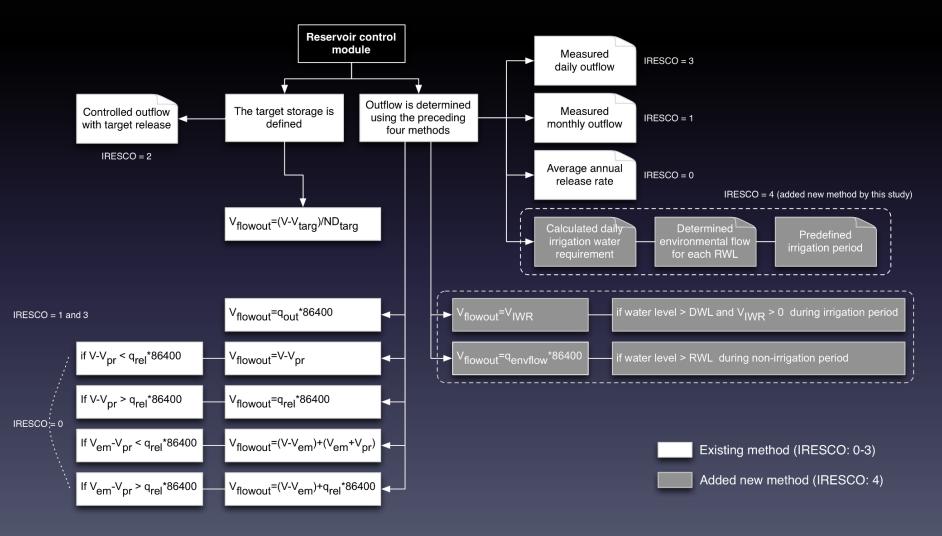
- The improvement of SWAT in order to suit the actual situation in agricultural reservoir watersheds of South Korea contains four aspects:
 - simulating the auto-irrigation according to the SWAT <u>coupling</u> with the calculated irrigation water from <u>irrigation water</u> requirement model (IWRM)
 - 2) applying the restricted water level (RWL) for <u>multiple water</u> <u>supply</u>
 - incorporating the <u>operation rules of the reservoir</u> such as order, timing and volume of water supplies into the reservoir module of SWAT
 - 4) considering the <u>irrigation return flow</u> that contribute to <u>streamflow</u>

SWAT improvement


Reservoir control module

- For the multiple water supply, a new method is needed in the reservoir control module of the model.
- The volume of outflow may be calculated using one of four different methods in the reservoir control module (IRESCO) of the original SWAT model.

Method	IRESCO	Requirement		
Existing	0	compute outflow for uncontrolled reservoir with		
(original ver.)		average annual release rate (m ³ /s)		
	1	measured monthly outflow (m ³ /s)		
	2	simulated controlled outflow-target release (m ³ /s)		
	3	measured daily outflow (m ³ /s)		
Added	4	calculated daily irrigation water requirement (10 ³ m ³),		
(improved ver.)		and environmental flow rate (m ³ /s)		

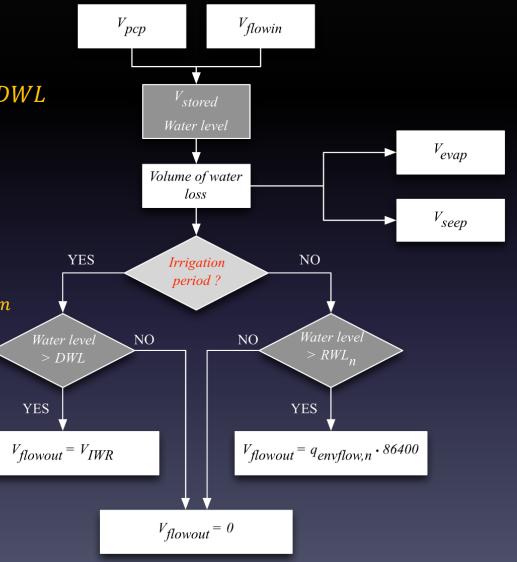

SWAT improvement

Paddy water movement in SWAT

SWAT reservoir simulation

✓ Volume of outflow

SWAT reservoir simulation

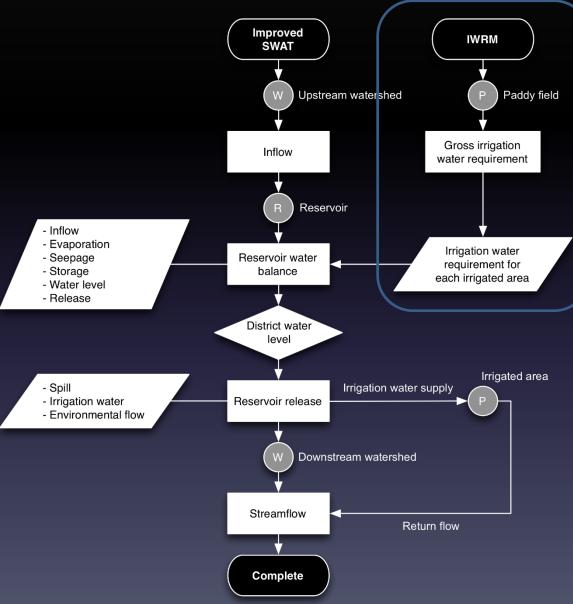

✓ Irrigation period

 $V_{flowout} = V_{IWR} \quad if water \ level > DWL$ $q_{IWR,return} = (V_{IWR} \cdot IWR_k)/86400$

✓ Non-irrigation period

 $V_{flowout} = q_{envflow,n} \cdot 86400$ if water level > RWL_n

 RWL_n is the restricted water level (EL.m) for environmental water supply, which is possible to set up to five by user within the range from DWL to HWL

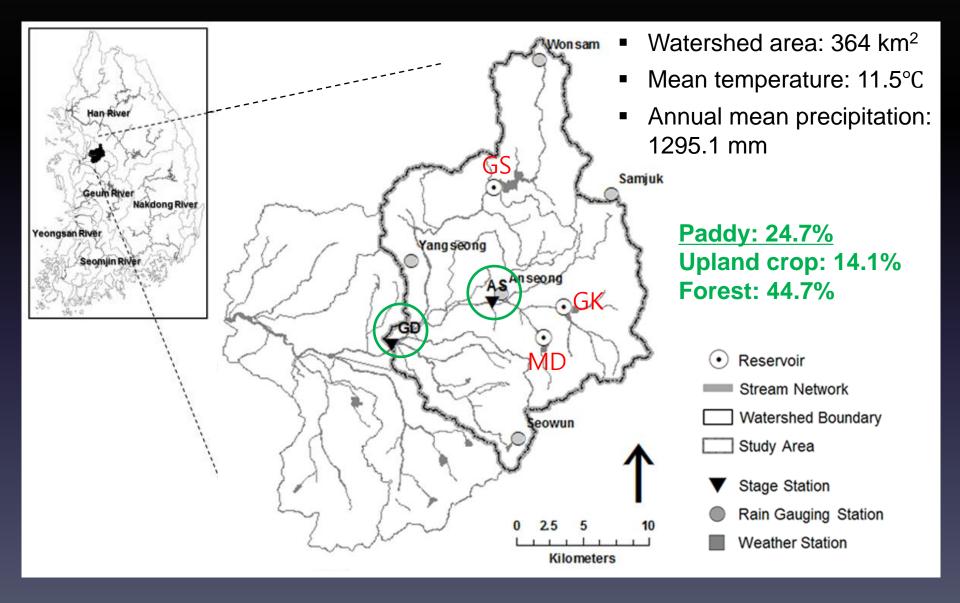


SWAT new parameters

Input and output data sets of reservoir module in the improved SWAT model

Data	Added input	Added output
Reservoir	 Relation curve between water 	 Water level on day (EL.m)
characteristics	level (EL.m) and storage capacity	Irrigation water requirement on
	(10 ³ m ³)	day (m ³)
	HWL and DWL (EL.m)	Irrigation return flow on day
Irrigation	beginning and ending dates of	(m ³ /s)
water	irrigation period (mm/dd-mm/dd)	Environmental flow on day (m ³)
	 Daily irrigation water requirement 	
	(10 ³ m ³) calculated by IWRM	
	 Irrigation return flow fraction (0-1) 	_
Environmental	 RWL (EL,m) 	
flow	Environmental flow rate for each	
	RWL	

SWAT modeling approach



Watershed water balance using improved SWAT coupled with the IWRM models is performed by considering the relationship between upstream, downstream, and reservoir

The improved SWAT and IWRM models were linked so that output from the IWRM became input for the improved SWAT model

•

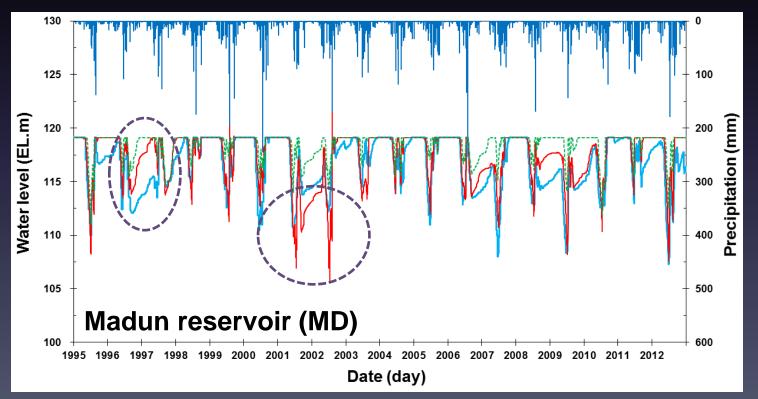
Study area

16

Agricultural reservoirs

✓ The reservoirs physical characteristics data

				Reservoir	
Characteris	tics	Unit	Gosam	Geumkwang	Madun
			(GS)	(GK)	(MD)
Area	Watershed area	ha	7,100	4,830	1,240
	Irrigated area	ha	2,970	1,906	530
	Area of full water	ha	230	138.4	40.5
Storage	Gross storage	10 ³ m ³	16,105	12,095	3,496
	Effective storage	10 ³ m ³	15,217	12,047	3,486
	Dead storage	10 ³ m ³	888	48	10
Water level	FWL	EL.m	54.1	67.7	120.8
	HWL	EL.m	52.4	67.0	119.1
	DWL	EL.m	40.8	51.5	102.0
Dam	Constructed year	-	1963	1961	1975
	Туре	-	Fill dam	Fill dam	Fill dam


Data for SWAT evaluation

Data	R/S/P	Description	Source
Geographical da	ta		
Topography	30 m	Digital elevation model (DEM)	KNGI
Land use	1:25,000	Landsat land use classification (seven classes)	KME
Soil	1:25,000	Soil classification and physical properties, e.g., texture, porosity, field capacity, wilting point, saturated conductivity, and depth	KRDA
Measured data			
Weather	1980-2012	Daily precipitation (mm), minimum and maximum temperature (°C), mean wind speed (m/s), and relative humidity (%) data	KMA
Rainfall	1980-2012	Daily precipitation data (mm)	WAMIS
Reservoir water level	1995-2012	Daily reservoir water level data (EL.m) and it was converted to storage volumes (m ³)	KRC
Discharge	1998-2012	Daily water level data (EL.m) and it was converted to streamflow (m ³ /s)	HRFCO

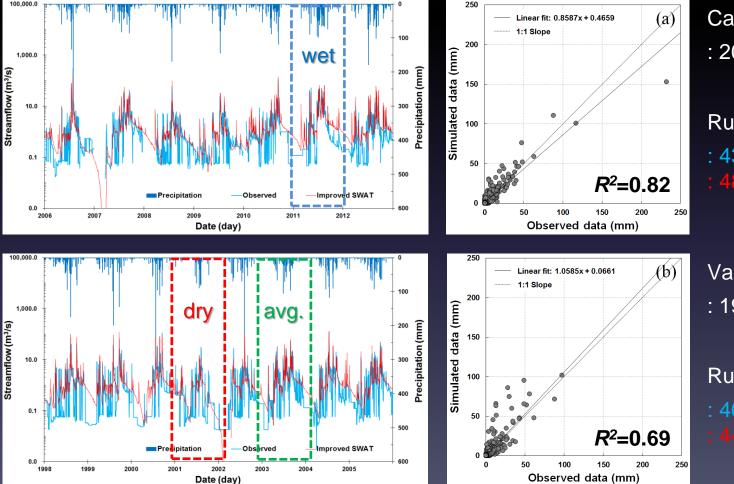
SWAT reservoir simulation results

Evaluation of reservoir operation

 The Hydrological Operation Model for Water Resources System (HOMWRS) which developed by the Korea Rural Community Corporation (1998) was adopted for the comparison of reservoir operation.

SWAT reservoir simulation results²⁰

✓ Water balance


Decemueir		Reservoir water balance (10 ³ m ³)					
Reservoir	Model	INFLOW	IWR	WB	SPILL		
Gosam	HOMWRS	67,719	20,716	47,003	50,465		
	Improved SWAT	65,156	18,311	46,845	35,792		
		(-3.8)	(-11.6)	(-0.3)	(-29.1)		
Geumkwang	HOMWRS	42,075	9,750	32,325	35,066		
	Improved SWAT	43,319		31,211	22,335		
		(+3.0)		(-3.4)	(-36.3)		
Madun	HOMWRS	9,672		5,987	6,565		
	Improved SWAT	9,905		6,908	7,987		
		(+2.4)		(+15.4)	(+21.7)		

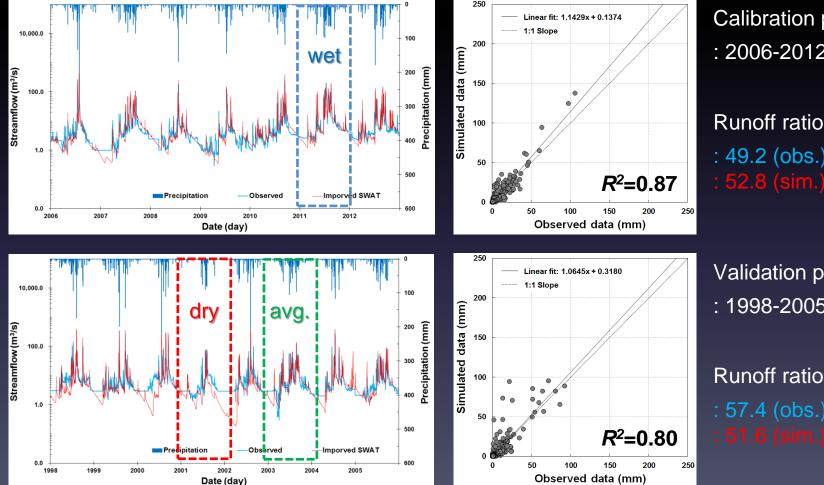
SWAT reservoir simulation results²¹

Poconvoir	Evaluation criteria	Observed	Simul	Simulated		
Reservoir		Observed	HOMWRS	Improved SWAT		
Gosam	Mean storage, V	0.81	0.94	0.89		
	Mean V at 1 Apr.	0.97	1.00	0.99		
	Mean V at 30 Sep.	0.76	0.92	0.87		
	NSE		0.05	0.50		
	R^2		0.50	0.68		
Geumkwang	Mean storage, V	0.73	0.97	0.86		
	Mean V at 1 Apr.	0.89	1.00	0.95		
	Mean V at 30 Sep.		0.96	0.85		
	NSE		-0.98	0.23		
	R^2		0.36	0.61		
Madun	Mean storage, V	0.75	0.93	0.82		
	Mean V at 1 Apr.		0.99	0.94		
	Mean V at 30 Sep.		0.91	0.83		
	NSE		-0.20	0.62		
	R ²		0.50	0.74		

SWAT model calibration results

✓ Streamflow at AS station

Calibration period : 2006-2012 (7yrs)


Runoff ratio (%) : 43.0 (obs.) : 48.7 (sim.)

Validation period : 1998-2005 (8yrs)

Runoff ratio (%) : 40.6 (obs.) : 44.3 (sim.)

SWAT model calibration results

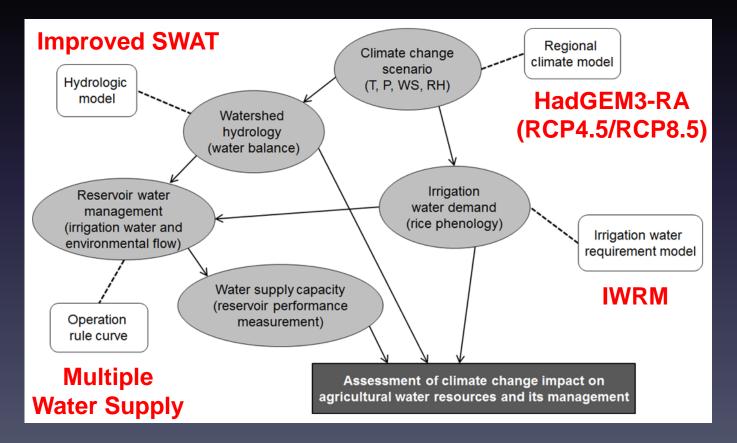
✓ Streamflow at GD station (watershed outlet)

Calibration period : 2006-2012 (7yrs)

Runoff ratio (%) : 49.2 (obs.)

Validation period : 1998-2005 (8yrs)

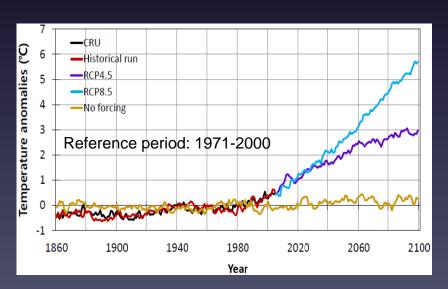
Runoff ratio (%) : 57.4 (obs.)


SWAT statistical summary

Gauging station	Static		Calibration	Validation	All data
Precipitation (mm/yr)			1327.5	1306.8	1316.5
Anseong (AS)	Runoff ratio (%)	Obs.	43.0	40.6	41.7
		Sim.	48.7	44.3	46.3
	Evaluation criteria	R^2	0.82	0.69	0.75
		NSE	0.60	0.53	0.56
		RMSE	2.50	2.93	2.73
Gongdo (GD)	Runoff ratio (%)	Obs.	49.2	57.4	53.6
		Sim.	52.8	51.6	52.2
	Evaluation criteria	R^2	0.87	0.80	0.83
		NSE		0.68	
		RMSE	2.03	2.56	2.31

- The peak runoff errors may be caused by poor simulation of anthropogenic effects on runoff mechanisms in paddy fields (24.7% of the total area).
- Unlike typical runoff mechanisms, rice paddy hydrology is managed with irrigation scheduling and levee height adjustment, which increase the difficulty of simulating water budgets.
- During paddy cultivation periods, farmers artificially control levee heights for their own water management.

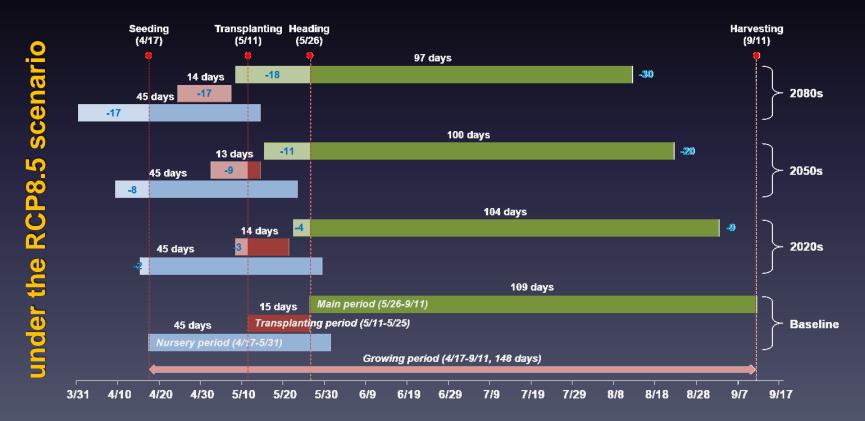
SWAT application

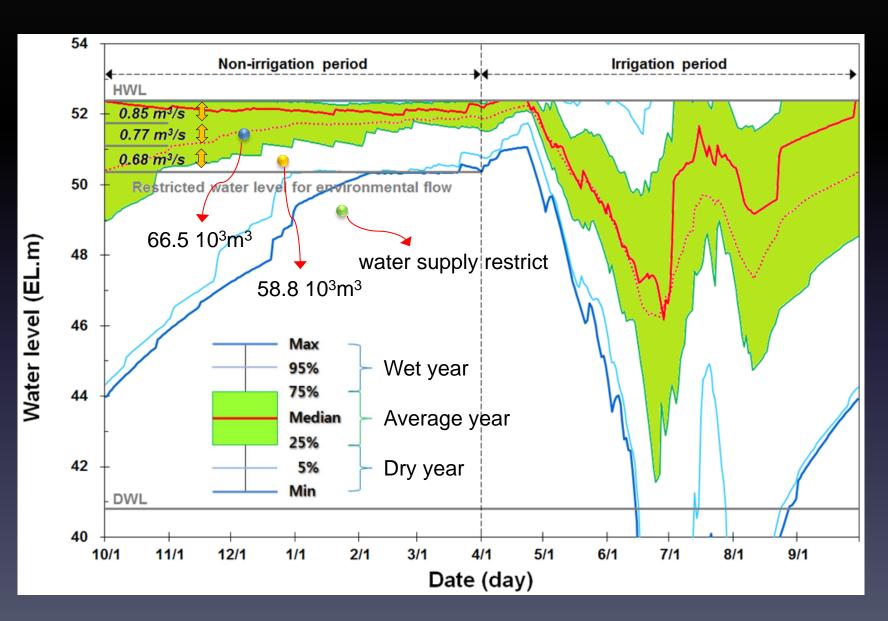

 Application of the improved SWAT model for agricultural water management adapting climate change

RCM projection

✓ Downscaled HadGEM3-RA data

- Source: NIMR/KMA (2011)
- Scenario: RCP4.5, RCP8.5
- Period: 2006-2099
- Time step: daily
- Variable: T, PCP, RH, WS




2100		RCP2.6	RCP4.5	RCP6.0	RCP8.5
Temp.	Global Scale	1.4	2.4	2.9	4.7
(°C)	Korea Peninsula	-	3.4	-	6.0
Prec.	Global Scale	3.0	4.6	5.0	7.2
(%)	Korea Peninsula	-	17.3	-	20.4

Change of rice phenology

- ✓ For climate change adaptation of future paddy irrigation, the <u>rice</u> <u>growing period can be shifted 17 days earlier</u> without increasing the IWR (Park, 2013).
- Such a shift can significantly reduce the risk of rice plant damage due to water shortage of the agricultural reservoir.

Reservoir operating rule curve

Effects of multiple water supply

 Streamflow at the watershed outlet (GD) using the improved SWAT

	Scenario		Streamflow (mm)			
Scenari			Impact	Adaptation	Multiple water supply	
	Baseline	1227.8	601.0			
RCP4.5	2020s	1255.8 (+2.3)	594.6 (-1.1)	598.2 (-0.5)	598.7 (-0.4)	
	2050s	1379.7 (+12.4)	707.1 (+17.7)	715.0 (+19.0)	715.9 (+19.1)	
	2080s	1425.5 (+16.1)	741.7 (+23.4)	750.5 (+24.9)	751.4 (+25.0)	
RCP8.5	2020s	1256.6 (+2.3)	603.5 (+0.4)	607.2 (+1.0)	607.8 (+1.1)	
	2050s	1459.9 (+18.9)	764.2 (+27.2)	770.2 (+28.2)	771.4 (+28.4)	
	2080s	1499.7 (+22.1)	778.3 (+29.5)	792.6 (+31.9)	794.1 (+32.1)	

Concluding remarks

- The main objective of this study is to assess the <u>future climate change</u> <u>impact and adaptation on agricultural water resources</u> to manage reservoir and its watershed in the irrigated agricultural region of South Korea.
- Improved <u>SWAT coupled with IWRM</u> reproduced long-term water quantity and reservoir operation better in an agricultural reservoir watershed.
- This study provides a good reference to understand the variation of agricultural water resources in highly reservoir watershed, and is expected to technically support the assessment of <u>multiple water supply</u> capacity.
- Although the applicability of this results is limited, they can be used as basic tools in the development of agricultural water resources, particularly in the estimation of capacity and capability.
- Also, to mitigate negative hydrologic impacts and utilize positive impacts, climate change should be considered in water resource planning for the agricultural reservoir watershed.

Thank you

Q&A

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0008716).