Simulating the Impacts of Retention Basins on Erosion Potential in Urban Streams using SWAT

> Roger H. Glick, P.E., Ph.D. Leila Gosselink, P.E.

Watershed Protection Department City of Austin

Presented at

2013 International SWAT Conference Toulouse, France Université Paul-Sabatier

Study area

Study Watershed: Tributary to Gilleland Creek

Elevation Data

Model Sub-basins

Site Slopes

Site Soils

Undeveloped Land Use

Basic Land Use – 51.2% IC

Low IC Land Use – 34.9% IC

High IC Land Use – 64.4% IC

HRU Distribution

Modeling Scenarios

- 3 impervious cover scenarios: 34.9, 51.2 and 64.4 %
- No detention
- 4 basin sizes: ¹/₂", CWO, LCRA and SOS
- 3 drawdown times: 24, 48 and 72 hours
- 4 median particle sizes: 12.5, 19, 24.5 and 38 mm
- Channel shear

Computation of shear

$$\tau = \gamma_w \cdot D_H \cdot S_w$$

where,

 τ = shear (Pa) γ_w = density of water (kg/m³) D_H = depth of water (m) S_w = channel slope (m/m)

Computation of critical shear

$$\tau_c = \Theta_c (S_g - 1) \cdot \gamma_w \cdot d_{50}$$

where,

 $τ_c$ = critical shear (Pa) $γ_w$ = density of water (kg/m³) S_g = specific gravity of soil, 2.65 d_{50} = median particle diameter (m) $θ_c$ = critical Shield's parameter, 0.047

ES was defined as:

$$ES = \sum (\tau - \tau_c)$$
 for all $\tau > \tau_c$

Effects of changing drawdown rate

WATERSHED PROTECTION

Effects of changing capture volume

Existing sizing requirements

CWO Sizing Performance 250% 12.5mm 19mm 25.4mm 38mm 200% **Change in Excess Shear** 150% 100% 50% 0 High Med Low ImperviousCover

WATERSHED

Conclusions

- Larger water quality capture volumes may be detrimental if the stream bed and bank has small particle diameters.
- Extending drawdown times may reduce excess shear but will result in more bypass flows.
- Optimal capture volume and drawdown rates need to be sized based on stream geomorphology when assessing erosion.
- Existing requirements are adequate for particle sizes greater that 12.5 mm.

