Comparing the Changes in Hydrology due to Different Development Regulations using Sub-Daily SWAT

> Roger H. Glick, P.E., Ph.D. Leila Gosselink, P.E.

Watershed Protection Department City of Austin

Presented at

2013 International SWAT Conference Toulouse, France Université Paul-Sabatier

Study area

Study Watershed: Tributary to Gilleland Creek

Elevation Data

Model Sub-basins

Site Slopes

Site Soils

City of Austin Ordinances:

Land Use & Controls

- Undeveloped [UND]
- Pre-Waterways Ordinances [Pre-ORD], <1974</p>
 - No controls
 - Limited creek easements, >320 ac.
- Waterway Ordinance [WO], 1974-1986
 - Detention only
 - Wider easements, >320 ac

Comprehensive Watershed Ordinance [CWO], 1986-present*

- Detention and ½"+ sed-fil
- Creek buffer and water quality transition zone, >320 ac
- Watershed Protection Ordinance [WPO], proposed
 - Detention and ½"+ sed-fil
 - Creek buffer, >64 ac (no WQTZ)

Undeveloped Land Use

Pre-Ord Land Use (<1974)

WO Land Use (~1974-86)

CWO Land Use (1986-present)

WPO Land Use (proposed)

HRU Distribution

Model Scenarios

Developed Conditions

- Irrigation and fertilizer on lawns and commercial; except high slopes
- Increased roughness & conductivity in channels
- 100% of developed residential & commercial land treated by BMPs; some land uses excluded.
- One large detention basin mid-basin (reach 9)

Detention Pond Location

Effects of Ordinances

Impacts on Flooding

Peak Flow Return Interval

SHED

Computation of shear

$$\tau = \gamma_w \cdot D_H \cdot S_w$$

where,

 τ = shear (Pa) γ_w = density of water (kg/m³) D_H = depth of water (m) S_w = channel slope (m/m)

Impacts on Erosion Potential

Impacts on Erosion Potential

Computation of critical shear

$$\tau_c = \Theta_c (S_g - 1) \cdot \gamma_w \cdot d_{50}$$

where,

 $τ_c$ = critical shear (Pa) $γ_w$ = density of water (kg/m³) S_g = specific gravity of soil, 2.65 d_{50} = median particle diameter (m) $θ_c$ = critical Shield's parameter, 0.047

ES was defined as:

$$ES = \sum (\tau - \tau_c)$$
 for all $\tau > \tau_c$

Impacts on Erosion Potential

Impacts on Erosion Potential

Average Annual Excess Shear 2500 2000 Excess Shear (Pa) 1500 1000 500 0 UND Pre WO CWO WPO

Impacts on Aquatic Life

Changes in hydrology affect aquatic live in two ways

- Changes in the wet-dry cycle interrupting species life cycles
- Increased variability affecting habitat

Impacts on Aquatic Life

30 20 Fln Fld 24 16 Number of Low Flow Events Average Duration (day) 12 18 12 8 6 4 0 Ω WO CWO WPO UND Pre Scenario

Low Flow Events

WATERSHED PROTECTION

Low Flow Conditions

Mean Daily Flow Duration Curve

WATERSHED PROTECTION

Flow Peak and Variablity

WATERSHED PROTECTION

Average Daily Change

Conclusions

- Development prior to regulations had negative impacts on flooding, erosion and aquatic life potential.
- Detention designed for large design rainfall events will not address the increased frequency of higher flow rates.
- Flood detention alone will not address issues of erosion and aquatic life (and my be detrimental).
- Austin regulations since CWO implementation have been beneficial with respect to flooding, erosion and aquatic life potential.