

Comparing impacts of climate change on

streamflow among four African regions

Valentin Aich, Stefan Liersch, Tobias Vetter, Julia Tecklenburg, Shaochun Huang, Peter Hoffmann, Hagen Koch, Samuel Fournet, Valentina Krysanova, Eva N. Müller and Fred F. Hattermann

- 1. Why comparing impacts?
- 2. Study sites and model set-up
- 3. Climate input
- 4. Validation
- 5. Trends in streamflow
- 6. Implications on adaptations

Why comparing impacts?

- "Africa is one of the most vulnerable continents to climate change and climate variability, a situation aggravated (...) by low adaptive capacity (high confidence)." (IPCC, AR4)
- Strong need for adaptation, but where?
- Continental studies, regional studies
- But inbetween?

SWIM model for 4 African regions (Pilot study for RegMIP)

- 5 bias-corrected CMIP5 ESMs, 2 emission scenarios (RCPs)
- Still waiting for CORDEX Africa
- Trends of streamflow in means and extremes (1st half of 21st century)

РІК

Study sites and model set-up

Upper Blue Nile

Area: 167.000km² Mean precipitation/a: 1382mm Runoff-coefficient: 17% Subbasins: 558

Study sites and model set-up

Ubangi

Tim

Area: 489.000km² Mean precipitation/a: 1507mm Runoff-coefficient: 21% Subbasins: 377

19 CMIP5 ESMs, RCP 8.5: Trend 2004-2099

5 bias-corrected ESMs (Hempel et al. 2013) Change between 2020-2049 and 1970-1999, RCP 8.5

ΡΙΚ

Ubangi Limpopo Niger Upper Blue Nile 30 120 80 3 Pbias: 39 Pbias: 15.7 Pbias: 2.1 observed Pbias: 3.4 ----100 swim 40 40 20 4100 mm/mut 4100 40 40 mm/month 2 1 20 0 0 0 -0 Oct Dec Jan Mar May Oct Dec Jan Mar May Oct Dec Jan Mar May Mar May Aug Aug Aug Oct Dec Jan Aug 30 80 120 8 NSE: 0.73 NSE: 0.9 NSE: 0.63 NSE: 0.8 observed ----100 swim 40 mm/month 6 080 080 080 mm/month 41000 10 10 4 /mm 40 20 2 20 0 0 0 0 -1985 1989 1991 1973 1975 1977 1979 1973 1975 1977 1979 1980 1982 1983 1987 1971 1971 1984 1986

Trends in streamflow (means)

Streamflow in base period 1970-1999, WFD and ESMs

Trends in streamflow (extremes)

K

2020-2049, mean of RCP 2.6 and 8.5, only 5 ESMs!

Direction of trend agreement		Mean change			
Mean	Q10	Q90	Mean	Q10	Q90
<50%	50%	70%	28%	31%	27%
100%	100%	100%	39%	57%	19%
<50%	<50%	<50%	-1%	1%	-4%
70%	60%	70%	27%	12%	31%
	a Mean <50% 100% <50%	agreeme Mean Q10 <50%	agreement Mean Q10 Q90 <50%	agreement Mean Mean Q10 Q90 Mean <50%	agreement Mean Q10 Q90 Mean Q10 <50%

Take away

- 1. Impact comparison has added value as part of holistic approach:
 - least uncertainty in the Upper Blue Nile basin
 - in the Limpopo basin results are most extreme, but wide spread of projections, more likely to become "wetter"
 - In the basins of Ubangi and Niger, even the direction of trend is highly uncertain
- 2. State-of the art climate projections and modeling approaches could in none of the catchments reduce uncertainties for direct adaptation planning
- 3. High level of agreement on increasing flows, also highflows
 - Adaptation efforts on climate change in Africa should not neglect this thread

Thank you!

Study sites

 \bigcirc

ΡΙΚ

	Niger	Upper Blue Nile	Ubangi	Limpopo
Area in km²	2.156.000	167.000	489.000	413.000
Alt. range in m a.s.l.	0 – 2961	526 - 4187	341 – 2046	0 – 2326
Mean temp. in C	28	19	25	21
Mean temp. warmest/ coldest month in C	32 in May / 24 in Jan.	21 in April/ 17 in Dec.	26 in March/ 24 in Dec.	25 in Feb./ 15 in July
Mean prec. in mm/ a	682	1382	1507	530
Dominant land uses	cropland: 20% grassland: 18% savannah 14%	cropland: 57% savannah: 30%	forest: 50% cropland: 32%	forest: 34% cropland: 32%, savannah: 20%
Length of river in km*	~3650	~800	~1670	~1750
Mean annual discharge in mm/a	~170	~370		
Runoff- coefficient**	~18%	~17%	~21%	~2%

5 downscaled/ bias-corrected (ISI-MIP method) ESMs Change between 2070-2099 and 1970-1999, RCP 8.5

PIK

5 downscaled/ bias-corrected (ISI-MIP method) ESMs Change between 2070-2099 and 1970-1999, RCP 8.5

Climate sensitivity, "annual" anomalies between 2004-2099 to base period 1970-1999, RCP 8.5

Q10 (high flows)

2070-2099 - 1970-1999

Q90 (low flows)

