July 15th-19th 2013

2013 INTERNATIONAL SWAT

WORKSHOPS & CONFERENCE

Climate change impact on the water resources of the Garonne River watershed

Youen GRUSSON, José-Miguel SANCHEZ-PEREZ, Sabine SAUVAGE, Chea RATHA, Raghavan SRINIVASAN, François ANCTIL

GREEN AND BLUE WATER

Blue Water: Run Off, Aquifers and Streams, «available» water, the most studied.

<u>Green Water</u>: **PET** and **Soil moisture**, «Invisible» water, hard to manage.

GREEN AND BLUE WATER

Swat Model and Blue/Green water

Very large Scale: Continental: Africa (Schuol & al. 2006)

Sub Continental: West africa (Schuol & al. 2008)

Country: Iran (Abbaspour & al. 2009 Faramarzi & al. 2008)

Large Watershed: Heihe river (Zang & al. 2012)

GREEN AND BLUE WATER

Swat Model and Blue/Green water

Very large Scale: Continental: Africa (Schuol & al. 2006)

Sub Continental: West africa (Schuol & al. 2008)

Country: Iran (Abbaspour&al 2009 Faramarzi & al. 2008)

Large Watershed: Heihe river (Zang & al. 2012)

- Monthly time Step
- Climate change impact
- Our project:

GARONNE RIVER PROJECT

GARONNE RIVER :
AN HETEREGENOUS, WELL KNOWN WATERSHED

An heterogenous catchment...

- 51 000 km²
- From 25m to 3146m

...and a well known and monitored catchment

LAND USES:

- Agricultural and Pastural uses: 60%

- Forest : 30%

CORINE Land Cover (CLC), 2006, (1:1000000)

Land Use

...and a well known and monitored catchment

- SOIL:

168 differents soil simplified on 9 types of dominant soil

FAO map1985, simplified, scale (1:1000000)

...and a well known and monitored catchment

HYDROLOGY:

Banque Hydro: 280 gauging stations on the Watershed

...and a well known and monitored catchment

• WEATHER:

Météo France: 39 Weather Stations

Météo France SAFRAN grid: Meso scale atmospheric analysis system for surface variables

...and a well known and monitored catchment

Which data? Which accuracy?

<u>Preliminery test</u>:

Impact of spatial accuracy on the performance

<u>1st test</u>: Impact of Sub Watershed number

- Sub watershed definition: 44 to 2552 sub watershed
- SAFRAN data: 43 to 780 SAFRAN input point
- With default parameters / Monthly time step

- Comparision with 14 gauging stations on 1990-2000 period

R² evolution as a function of Subwatershed number

Nash-Sutcliff evolution as a function of Subwatershed number

Maximum on 144 Sub-Watershed = 138 SAFRAN points

2nd test: Influence of weather data spatial density

- With same stream definition: 144 sub-watershed (20 000ha)
- With default parameters / Monthly time Step
- Comparision with 14 gauging stations on 1990-2000 period

2de test: Influence of weather data spatial density

- With same stream definition: 144 sub-watershed (20 000ha)
- With default parameters / Monthly time Step
- Comparision with 14 gauging stations on 1990-2000 period

5 differents configurations:

- SAFRAN data (138 points)
- 36 weather stations
- 36 SAFRAN points corresponding
- 10 weather Stations
- 1 weather station : Blagnac (Toulouse)

Nach-Sutcliff Evolution as a function of weather data spatial density

Nach-Sutcliff Evolution as a function of weather data spatial density

R² Evolution as a function of weather data spatial density

Perspectives & Conclusions

Conclusions

Weather data: Higher resolution ≠ better result

Treshold of data resolution

Find the good balance:

Result / complexification

Ongoing studies

- Impact of different soil data resolution on the hydrological output (SGDBE soil map on SWAT - 70 soil classes)
- Impact of Soil and Weather data resolution on other output (PET, groundwater, runoff)
- Maranda Benoit, LAVAL university: sensibility of PET formula for past and futur climate: 24 formula added on SWAT code

Acknowledgements:

THANK YOU

HyMex datasets

François Besson &
Eric Martin
From Météo-France

For SAFRAN data and help

