

2013 SWAT Conference

Toulouse, Paris, France

Assessment of agricultural best management practices using mathematical models: a review

Hui Xie

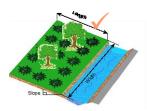
Lei Chen*

Jiali Qiu Yucen Zhong

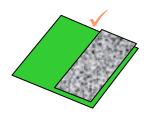
Zhenyao Shen, Professor

Beijing Normal University

Contents


- 1 Background
- 2 Watershed models
- 3 BMP models
- 4 Decision Support System
- 5 Implication

Background: What is BMPs



Point BMP: Practices that capture upstream drainage at a specific location and use a combination of detention, infiltration, evaporation, settling, and transformation to manage flow and remove pollutants.

Linear BMP: Areas adjacent to the stream channels that provide filtration of runoff, nutrient updates, and ancillary benefits of shading, habitat, and aesthetic value.

Area-based Practices: Land-based practices that affect larger area management, land cover and pollutant Inputs (e.g., fertilizer, pet waste)

Biotention at Xikeng Reservoir, Shenzhen, China

Background: What is a model?

• A theoretical construct system to represent those geological-, hydrological-, and ecological processes in waterselds.

• Incorporating prior observations drawn from field

Background: Model Categories

- Landscape models
 - Runoff of water and materials on and through the land surface
- Watershed models
 - Combination of landscape and receiving water models
- Site-scale models (BMP models)
 - Detailed representation of local processes
- Decision Support System (DSS)
 - Incorporation of GIS, watershed model and BMP model

Contents

- Background
- 2 Watershed models
- 3 BMP models
- 4 Decision Support System
- 5 Implication

E	xpli	icit	VS.	Lur	npe	d T	rea	tme	nt		WICHAR . BEILIN	1982
Model ProcessesExplicit RepresentationPartial/Lumpedn/a Not Available	GWLF	EGWLF	USLE	MUSLE	RUSLE	RUSLE2	KINEROS	SWAT	GBMM	CONCEPTS	SWMM5	HSPF/LSPC
Timestep	daily monthly	daily	annual avg	daily	annual avg	daily monthly	event	daily	_∎ daily	subdaily	subdaily	subdaily

•

n/a

•

n/a

•

•

•

•

n/a

•

•

•

n/a

n/a

n/a

n/a

Model Processes							Ī		i
Explicit RepresentationPartial/Lumpedn/a Not Available	GWLF	EGWLF	NSLE	MUSLE	RUSLE	RUSLE2	KINEROS	SWAT	

n/a

Atmospheric Deposition

Rainfall Detachment

Scour/Gully Erosion

Data/Parameter Guidance

Particle Size Distribution

Vegetation/Cover Impact

Agricultural Management

Urban Management

Settling & Resuspension

Particle Size Distribution

Stream Bank Erosion

Sorption/Desorption

Land-Based

•

n/a

n/a

n/a

n/a

n/a

n/a

•

n/a

n/a

n/a

A summary of reported literature

Agricultural BMPs₽	SWAT₽	AGNPS₽	AnnAGNPS.	HSPF₽	
Contour farming ¹³	10	10	₽	1€	
Strip cropping₄ ³	10	10	P	10	14
Rotation ²	10	₽	10	1₽	9
Nutrient management⊖	10	√ <i>₽</i>	₽	10	19
Integratedpesticide management₽	10	43	P	P	14
Conservation tilla ge+³	10	10	10	φ3	
Crop residue <i>₽</i>	10	₽	₽	10	100
Pasture management⊍	10	4	P	i p	10
Forage harvest management⊖	10	₽.	43	42	
Poultry management⊍	10	₽	.₽	۵	
Grazing management+	10	4	P	P	
Extensive landuse management⊖	10	₽.	42	43	
Cover crops⊖	10	₽ ³	10	10	
Bamyard management≓	10	+2	42	43	
Turgrass sod₽	10	₽.	43	42	
Critical area planting₽	10	₽	₽	۵	
Conversion of landuse₽	10	J ₽	10	10	
Recharge structures↔	10	₽.	43	42	
Terraces ²	10	₽	10	10	
Grade stabilization structure+ ³	10	+2	42	43	
Grassed waterways₽	√ €	₽.	42	43	
Lined waterways.	Jø	Ę.	P	47	
Stream channel stabilization	14	+	ψ.	Ų	
Porous gully plugs+³	10	₽.	4	to.	
Pond4 ³	10	ę.	10	P	
liversion₊³	æ	10	42	43	
ive stock access#	10	10	10	10	
nultiple pondsystem	₽	10	P	P	
Γile drains⇔	10	42	42	43	
Filter strips.	10	10	10	√ ₽	
Filter borders₽	10	43	P	حه	

Summary of Watersheds models

Appendix

Table 1 Summary of watershed models with respect to BMP assessment

Models₽	Temporal resolution₽	Spatial representation@	Overland flow routings	Overland sediment routings	Channel processes₽	Developer↔
SWAT≠	Continuous; daily or sub-daily time steps.+	Sub-basins or further hydrologic response units defined by soil and land use/land cover.	CN method for infiltration and peak flow rate by modified Rational formula.	MUSLE characterized by runoff volume, peak flow rate, and USLE factors.	Channel degradation and sediment deposition with CH_EROD, CH_COV, CH_N2 and channel geometry to represent BMPs.	USDA₽
AGNPS+	Storm-event; one storm duration as a time step.	Cells of equal size with channels included.	CN method for infiltration, and flow peak using a similar method with SWAT.	USLE for soil erosion and sediment routing through cells with n, USLE factors to be concerned with.	Included in overland cells.₽	USDA₽
AnnAGNPS₽	Continuous; daily or sub-daily steps.4	Cells with homogeneous soil and land use.43	CN method for infiltration and SCS TR-55 method for peak flow.43	RUSLE to generate soil erosion daily or user-defined runoff event.	Channel degradation and sediment deposition with Modified Einstein equation and Dagnold equation.	USDA₽
HSPF₽	Continuous; variable constant steps (from 1 minute up to 1 day)	Pervious and impervious land areas, stream.€	Philip's equation for infiltration. ₽	Rainfall splash and wash off of detached sediment calculated by an experimental non-liner equation φ	Non-cohesive and cohesive sediment transport.	USGS;+ USEPA

How SWAT represent various BMPs

WDM: Watershed Data Management Files (Time Series Store, TSS Files)

Table 3 Key parameters adjusted to represent various BMPs in SWAT model

Agricultural↓ BMPs↓	CH_D2₽	CH_W2	CH_EROD₽	CH_COV₽	CH_N2₽	CH_N1	CH_S2¢	CH_K1e	FILTERW.	SLSUBBSN₽	n+	CN2₽	USLE_C42	USLE_I	P₄³
Contouring	Đ.	φ	ب	£2	ته	ę.	ę.	to.	P	ų.	Þ	4₽	ب	40	4
farming₽															
Filter strips₽	42	₽	e)	43	42	43	₽	€3	10	42	42	*2	+7	47	4
Filter borders∂	ė,	₽	C4	47	Ç.	4	₽	P	10	ep.	43	₽	.₽	P	4
Grade stabilization structures₽	ē	ė	√ <i>₽</i>	e ²	43	٩	√ ₽	٩	٠	Þ	43	¢.	42	4	*
Grassed waterways₽	10	40	42	√ ₽	√ ₽	€	ę.	₽	ė.	₽	47	ę,	₽	₽	+
Lined waterways <i>₽</i>	40	40	10	· P	40	ø	40	τ.	P	φ	43	₽	4	₽	42
Parallel terraces₽	ą.	·	P	47	4	P	Ψ.	4	4	√ ₽	ø.	40	4	40	+
Residue	€.	₽	43	43	42	42	₽	43	e.	42	1	40	40	₽.	4
nanagement∂															
Stream channel	√ ₽	40	√ <i>₽</i>	42	40	4	₽	42	€3	₽	43	¢)	4	47	4
stabilization₽															
Strip cropping₽	₽	ψ.	42	47	42	€	ę.	₽	ė.	ø	4	40	10	10	+
Porous gully plugs₽	₽	ę.	ته	42	42	40	₽	42	P	نه: ا	43	ę.	نه	47	42
Recharge	47	ę.	47	₽	42	47	₽	√ ₽	P	42	42	₽	4	47	4
structures₽															

Contents

- 1 Background
- Watershed models
- 3 BMP models
- 4 Decision Support System
- 5 Implication

Two typical BMP models

Table 2 Summary of BMP models and their characteristics

Model₽	Modules₽	Processes/ Mechanisms	Water Quality Constituents	Developer₽
REMM₽	Hydrology	Infiltration≠	Sediment <i>₀</i>	USDA₽
	Sediment⊌	Evaportransporation.	Nutrients (C, N, P)	
	Nutrient _←	Surface and subsurface flow routing√		
	Vegetative growth.	Nutrients cycling (C, N, P)		
		Sediment transport.		
VFSMOD.	Hydrology₽	Infiltration₄	Sediment⊬	NCSU Biological &
	Sediment transport₽	Overland flow routing₽	Pesticide@	Agricultural Engineering
	Pesticide removal.	Sediment transport₊		
		Pesticide trapping.₽		

BMP models: Point BMPs

BMPs	Present Approach	Optional Future Approaches
Bioretention	 Holtan-Lopez equation Constant evapotranspiration (ET) rate Stage-outflow storage routing using weir and/or orifice equations Completely mixed pollutant routing 1st order decay Under drain percent reduction (user defined) 	 Green-Ampt infiltration Calculate potential ET and actual ET Continuously stirred tank reactor (CSTR) in series pollutant routing Plug flow pollutant routing Kadlec and Knight's (1996) 1st order kinetic method Sedimentation Physically based substrate filtration and sorption
Detention pond	 Holtan-Lopez equation Constant ET rate Stage-outflow storage routing using weir and/or orifice equations Completely mixed pollutant routing 1st order decay 	 Green-Ampt infiltration Calculate potential ET and actual ET CSTR in series pollutant routing Plug flow pollutant routing Kadlec and Knight's 1st order kinetic method Sedimentation

BMP models: Point BMPs

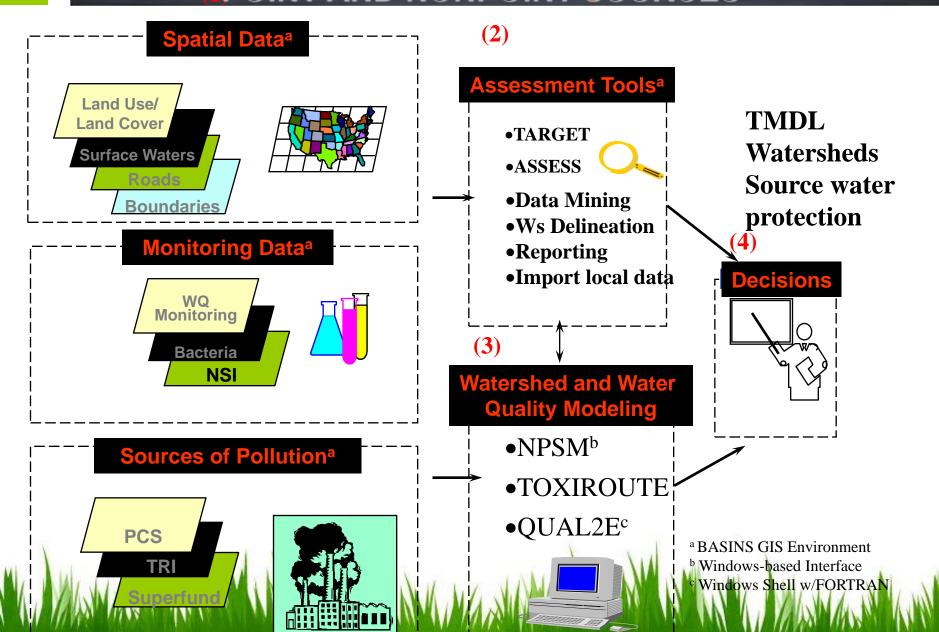
BMPs	Present Approach	Optional Future Approaches
Wetland	 Holtan-Lopez equation Constant ET rate Stage-outflow storage routing using weir and/or orifice equations Completely mixed pollutant routing 1st order decay 	 Green-Ampt infiltration Calculate potential ET and actual ET Pollutant routing CSTR in series or plug flow Kadlec and Knight's (1996) 1st order kinetic method Sedimentation
Infiltration trench	 Holtan-Lopez equation Constant ET rate Stage-outflow storage routing using weir and/or orifice equations Completely mixed pollutant routing 1st order decay 	 Green-Ampt infiltration Calculate potential ET and actual ET Pollutant routing CSTR in series or plug flow Kadlec and Knight's (1996) 1st order kinetic method Sedimentation Physically based substrate filtration and sorption

BMP models: Linear BMPs

BMPs	Present Approach	Optional Future Approaches
	ls that provide filtration of runoff, nutrient and aesthetic value	
Buffer Strip/Riparian Buffer	•Pollutant trap efficiency as a function of strip width (flow length)	 Nonlinear reservoir overland flow routing Kinematic wave overland flow routing Process-based sediment interception simulation method Process-based nutrient/pollutant removal simulation method

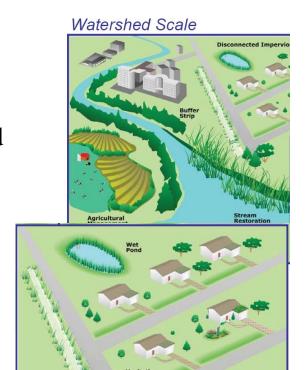
BMP models: Area-based BMPs

d-based practices that affect impere.g., fertilizer, pet waste)	rvious area management, land cover, and
Street sweeping pollutant removal effectiveness (SWMM)	•Additional controls on type and frequency of sweeping
Pervious/impervious areas (SWMM)	•Impervious area to pervious area land routing
Pollutant build-up/wash-off rates (SWMM) Infiltration rate (SWMM)	 Update to Universal Soil Loss Equation (USLE), adjustment of parameters Process-based simulation of soil profile and associated pollutant removal mechanism Database approach for estimating
	Street sweeping pollutant emoval effectiveness (SWMM) Pervious/impervious areas SWMM) Pollutant build-up/wash-off ates (SWMM)


Contents

- Background
- Watershed models
- 3 BMP models
- 4 Decision Support System
- 5 Implication

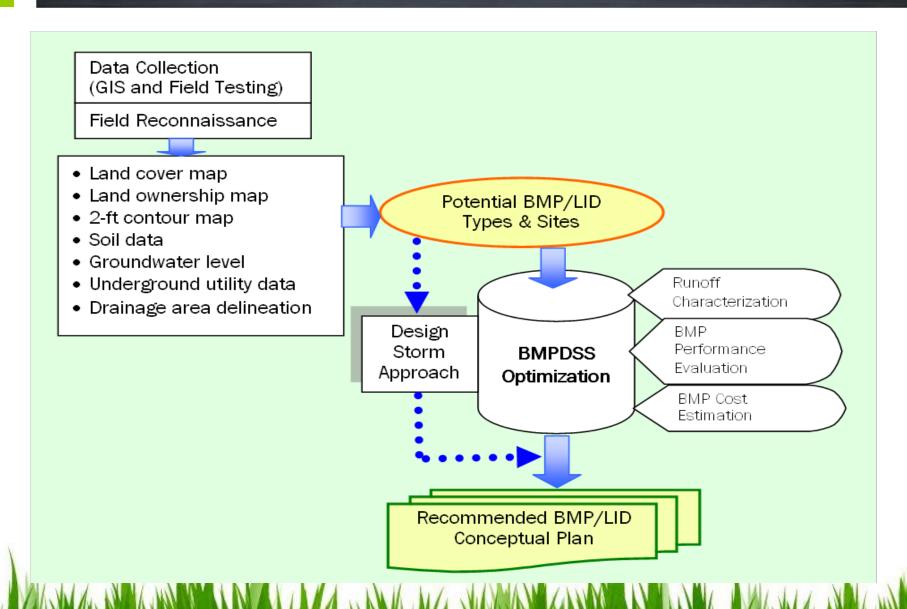
BETTER ASSESSMENT SCIENCE INTEGRATING 1POINT AND NONPOINT SOURCES



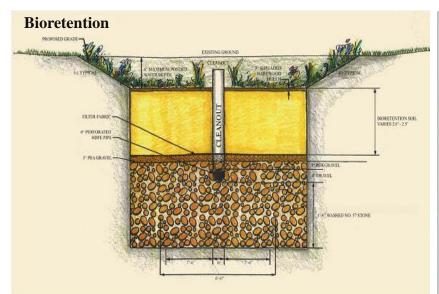
BETTER ASSESSMENT SCIENCE INTEGRATING POINT AND NONPOINT SOURCES

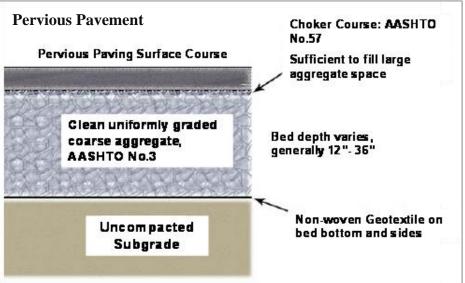
BMP design

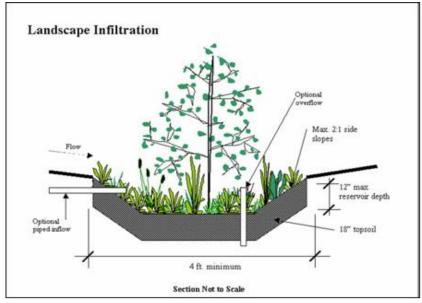
- Properly size and configure practices
- Evaluate effectiveness of BMP after design and construction
- Site development
 - Evaluate effectiveness of multiple practices for hydrology and water quality
 - Optimize selection and placement of practices
- Watershed management
 - Analyze watershed-wide implementation
 - Program evaluation
 - CSO reduction
 - TMDL compliance

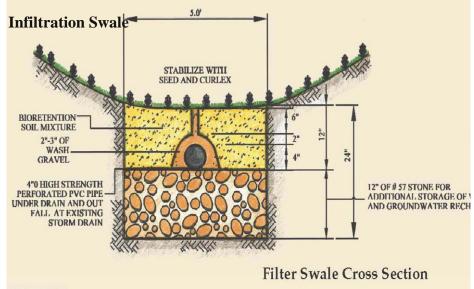


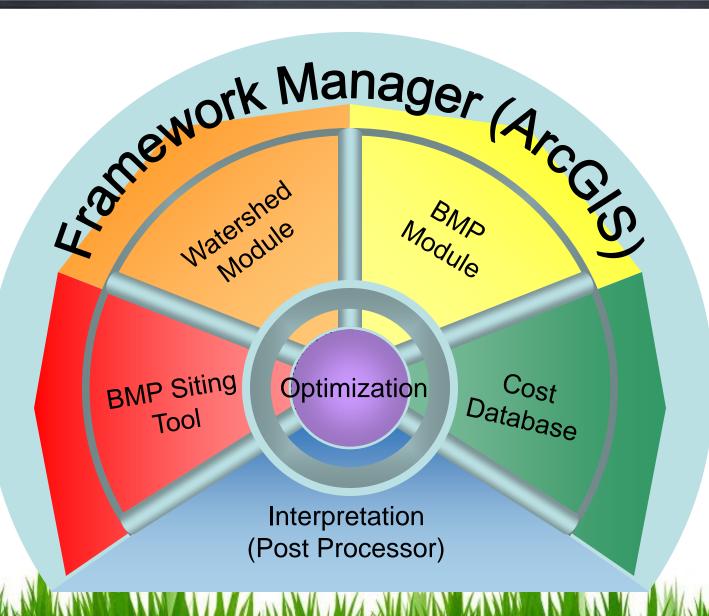
Community Scale

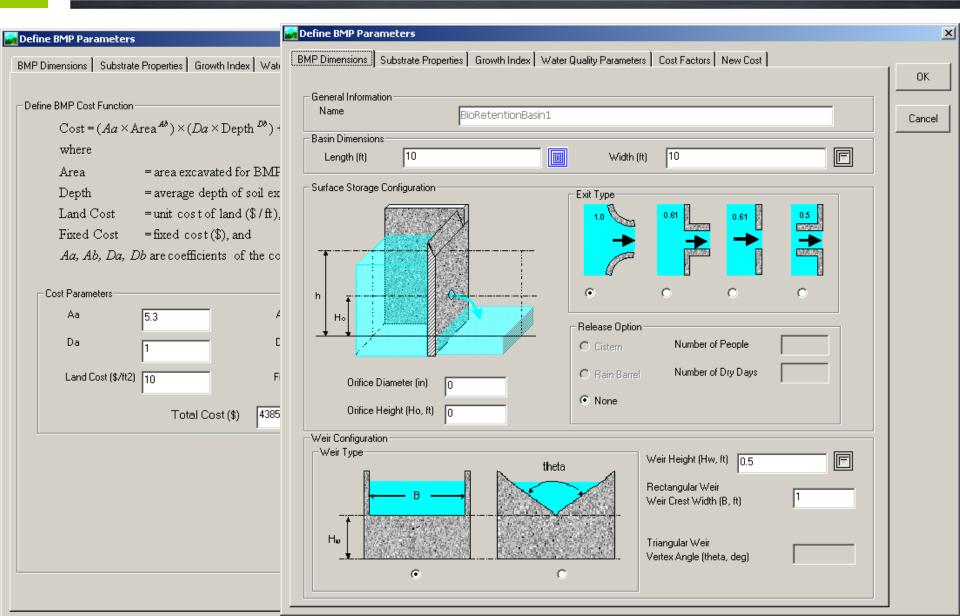

BMP-Decision Support System (BMP-DSS)






Selected BMP Types




SUSTAIN Components

Define BMP Details by SUSTAIN

Optimal Design Solutions

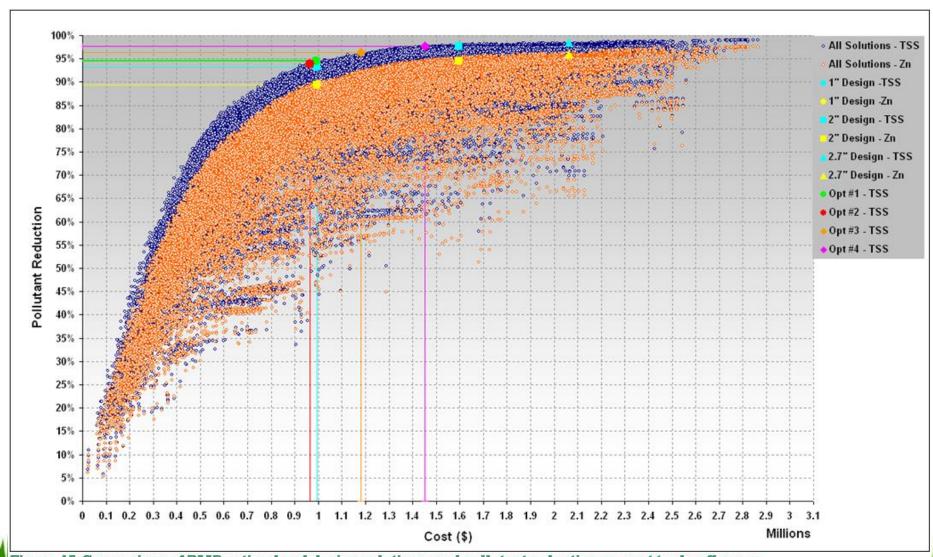
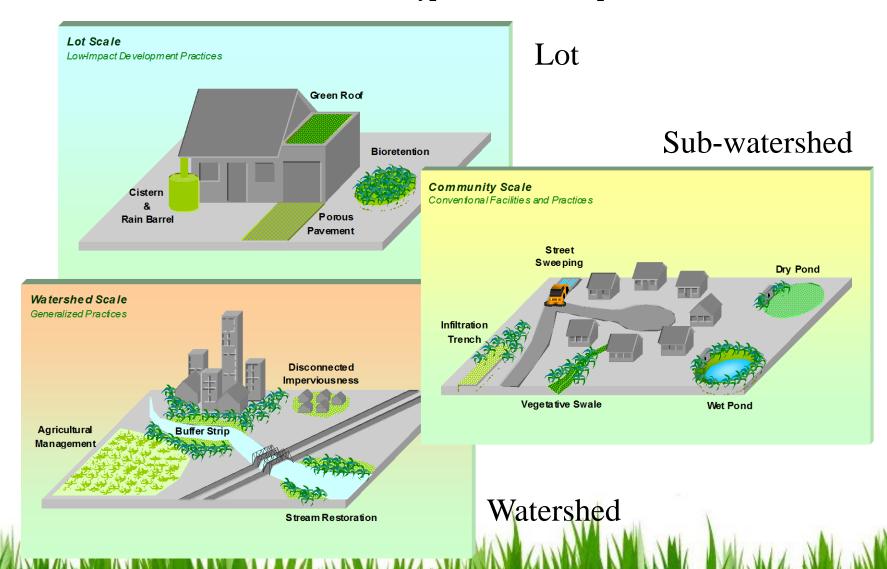


Figure 17. Comparison of BMP optimal and design solutions, and pollutant reduction vs. cost trade-off curve.

Contents



- 1 Background
- Watershed models
- 3 BMP models
- 4 Decision Support System
- 5 Implication

Future Enhancement - I

• Structured to allow users to select BMP types at various spatial scales

Future Enhancement - II

More Capabilities

- Add BMP simulation techniques for emerging technologies/recent research;
- Add optimization alternatives;
- Provide the ability for users to add their own bmp formulations as a discrete module (requires developing a generic interface and data exchange tool);

Future Enhancement - III

More Ground-Truth and Testing

- Additional applications in diverse urban settings (could be co-sponsored by other groups);
- Evaluate performance using recent BMP specific monitoring studies.

Thank you!

Zhenyao Shen

School of Environment,

Beijing Normal University,

Beijing,

China

Tel: +86-10-5880 0829

Fax: +86-10-5880 0829

E-mail: zyshen@bnu.edu.cn

Lei Chen

School of Environment,

Beijing Normal University,

Beijing,

China

Tel: +86-10-5880 0829

Fax: +86-10-5880 0829

E-mail:

chenlei1982bnu@gmail.com