

Integration of a pseudo 3D finite element ground water model with SWAT

B. Narasimhan, J. Naveen, P. Pooja, K. Sangeetha, and B. S. Murty

Balaji Narasimhan

Assistant Professor

Indian Institute of Technology – Madras.

INDIA

Outline

- Ground water model in SWATAssumptions and Limitations
- Pseudo 3D FEMAssumptions and Limitations
- Preliminary assessment of the model
 Upper Son Basin, Ganges, India

Groundwater Modelling in SWAT

SWAT simulates two types of aquifer for each sub-basin/HRU:

- Shallow Aquifer
- Deep Aquifer

Water balance in Shallow Aquifer

day i (mm of water)

wpump,sh = amount of water removed from shallow
aquifer by pumping on a day i (mm of
water)

Computation of Recharge

REVAP

Maximum amount of water removed from the aquifer via REVAP

$$W_{revap,mx} = \beta_{rvp}$$
 .Ea

Capillary movement of water from shallow aquifer back to root zone

Where,

Ea

W_{revap,mx} = maximum amount of water moving into soil zone in response to water deficiencies (mm of water)

 β_{rev} = revap coefficient

= actual evapotransipiration

Groundwater flow or Base flow

Base flow occur only if the amount of water stored in the shallow aquifer exceeds a threshold value specified by user ,aq_{shthr,q}

The baseflow rate is modelled using Hooghoudt's equation

Hooghoudt's equation

Hooghoudt's found the equation for steady state response of groundwater flow to recharge is

$$Qgw = \frac{8000.K}{\frac{Sat}{L_{gw}}} h_{wtbl}$$

Where,

 Q_{gw} = Groundwater flow or base flow, into the main channel on day i (mm of water)

K_{sat} = Hydraulic conductivity of the aquifer (mm/day)

L_{Gw} =Distance from the ridge or sub basin divide for the groundwater system to the main channel (m)

h_{wtbl} =Water table height (m)

Drain Spacing design

Source; http://climate.sdstate.edu/water/drainspacingcalculatordocumentation.html

Assumptions by Hooghoudt's

- Soil is homogeneous
- Darcy's law is valid for the flow
- ❖ The hydraulic gradient at any point is equal to the slope of the water table above that point (I = dy/dx) and the water flows horizontally

Limitations

- 1D model
- Steady state assumption
- No interaction among HRU's

Groundwater Modelling in SWAT

SWAT simulates two types of aquifer for each sub-basin/HRU:

Shallow Aquifer

Deep Aquifer

Model this in FEM

SWAT – FEM Coupling

SWAT model was coupled with a pseudo 3D finite element ground water model developed by Narasimhan and Sri Ranjan. (2000)

$$\frac{\delta}{\delta x} \left((k(x, y) h \frac{\delta h}{\delta x}) + \frac{\delta}{\delta y} \left((k(x, y) h \frac{\delta h}{\delta y}) + Q(x, y, t) = Sy \frac{\delta h}{\delta t} \right)$$

Assumptions

- The flow is horizontal
 - Vertical hydraulic gradient is assumed to be zero – Dupuit's assumptions
- The aquifer formation is primarily horizontal
- The aquifer can be anisotropic and heterogeneous in X and Y direction

Dupuit's Assumption

Source: http://www.interpore.org/reference_material/mgfc-course/mgfcaqtr.html

Finite Element Solution

- Galerkin's formulation
 - Selection of finite element shape
 - Trial function
 - Linear Vs. Non-linear
 - Formulation of element matrices
 - Finite difference formulation for the time derivative
 - Solving the system of equations using LU decompositions

Linear Triangular Finite Elements

where:

$$a_{i} = x_{j}^{(e)} y_{k}^{(e)} - x_{k}^{(e)} y_{j}^{(e)} \qquad a_{j} = x_{k}^{(e)} y_{k}^{(e)} - x_{i}^{(e)} y_{k}^{(e)} \qquad a_{k} = x_{i}^{(e)} y_{j}^{(e)} - x_{j}^{(e)} y_{i}^{(e)}$$

$$b_{i} = y_{j}^{(e)} - y_{k}^{(e)} \qquad b_{j} = y_{k}^{(e)} - y_{i}^{(e)} \qquad b_{k} = y_{i}^{(e)} - y_{j}^{(e)}$$

$$c_{i} = x_{k}^{(e)} - x_{j}^{(e)} \qquad c_{j} = x_{i}^{(e)} - x_{k}^{(e)} \qquad c_{k} = x_{j}^{(e)} - x_{i}^{(e)}$$

A(e) = Area of element

$$A^{(e)} = \frac{1}{2} \begin{vmatrix} 1 & \mathbf{x}_{i}^{(e)} & \mathbf{y}_{i}^{(e)} \\ 1 & \mathbf{x}_{j}^{(e)} & \mathbf{y}_{j}^{(e)} \\ 1 & \mathbf{x}_{k}^{(e)} & \mathbf{y}_{k}^{(e)} \end{vmatrix}$$

Formulation of Element Matrices

$$[K^{(e)}] = \int_{A} \left(D_{dx_{i}} \frac{\partial [N]^{T}}{\partial x} \frac{\partial [N]}{\partial x} + D_{dy_{i}} \frac{\partial [N]^{T}}{\partial y} \frac{\partial [N]}{\partial y} \right) dA$$

$$+ \int_{A} [N]^{T} \left(V_{tx_{i}} \frac{\partial [N]}{\partial x} + V_{ty_{i}} \frac{\partial [N]}{\partial y} \right) dA$$
(4.11)

Solving Eq.4.11 using triangular elements gives:

$$[K^{(e)}] = \frac{D_{dx}^{\bullet}}{4A^{(e)}} \begin{bmatrix} b_i^2 & b_i b_j & b_i b_k \\ b_j b_i & b_j^2 & b_j b_k \\ b_k b_i & b_k b_j & b_k^2 \end{bmatrix} + \frac{D_{dy}^{\bullet}}{4A^{(e)}} \begin{bmatrix} c_i^2 & c_i c_j & c_i c_k \\ c_j c_i & c_j^2 & c_j c_k \\ c_k c_i & c_k c_j & c_k^2 \end{bmatrix}$$

$$+ \frac{V_{tx}}{6} \begin{bmatrix} b_i & b_j & b_k \\ b_i & b_j & b_k \\ b_i & b_j & b_k \end{bmatrix} + \frac{V_{ty}}{6} \begin{bmatrix} c_i & c_j & c_k \\ c_i & c_j & c_k \\ c_i & c_j & c_k \end{bmatrix}$$

$$[C^{(e)}] = \int R_d [N]^T [N] dA$$

$$(4.12)$$

Solving Eq.4.15 using lumped formulation for triangular elements gives:

$$[C^{(e)}] = \frac{A^{(e)}}{3} R_{d_i} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Boundary conditions

- Time varying Flux boundary
 - Percolation from soil layer
- Source or Sink
 - Ground water pumping, REVAP and deep percolation
- Time varying head boundaries
 - Reservoirs
- Conditional time varying head boundaries
 - Connected/Disconnected river

Source: IWFM theoretical documentation

Finite difference solution in time

$$([C] + \theta \Delta t[K])\{C\}_{t+\Delta t}^{(e)} = ([C] - (1 - \theta) \Delta t[K])\{C\}_{t}^{(e)} + \Delta t((1 - \theta)\{F\}_{t} + \theta\{F\}_{t+1})$$

Eulers Backward difference method $\theta = 1$

$$\left([K] + \frac{[C]}{\Delta t} \right) \{C\}_{t+1}^{(e)} = \frac{[C]}{\Delta t} \{C\}_{t}^{(e)} + \{F\}_{t+1}$$

Inputs For Coupling

- SWAT Model :: HRU == FEM Model :: Element
- ♣ HRU ELE conversion (Percolation & Base flow)
 - Base flow when Avg ht. of water in element > Avg ht. of any node in the element
- Reach Node conversion (Gaining, Loosing Stream, connected/disconnected stream)
- Reservoir ELE conversion (Dry Elements and Wet Elements : based on the water level)

Sudy Area

- Son Basin in Ganga river
- Originates near Amarkantak in M.P. and flows north-north west
- Catchment area 67,842 sq.km.
- Length 784 km
- Tributaries Rihand & North Koel
- Steep gradient 0.35m to 0.55m / km

Watershed Delineation

- Flow-routingwas done
- Upper SonSub basins 143HRUs 599
- Sub basins 248

 HRUs 1143

IWFM Mesh Generator Tool

Discretization of watershed

Uses Triangle to subdivide the study area into triangular elements

Inputs – Basin and stream boundary

Integrated Hydrological Models Development Unit Modeling Support Branch Bay-Delta Office February 2013

Discretized Upper and Lower Son Basin

Assumptions

- The flow is horizontal
 - Vertical hydraulic gradient is assumed to be zero – Dupuit's assumptions
- The aquifer formation is primarily horizontal
- The aquifer can be anisotropic and heterogeneous in X and Y direction

Summary

- For simple cases, FEM formulation checked with analytical solution
- In future:
 - Application to a subbasin with higher base flow
 - Tifton watershed, Georgia
 - Upper North-Platte river, Nebraska