

Remote Sensing & Environmental Modelling

Development of a grid-based version of the SWAT landscape model

H. Rathjens, N. Oppelt, M. Volk, J. Arnold

2013 International SWAT Conference Toulouse, France

Central questions

Why grid-based modeling with SWAT?

How does the grid-based model work?

Does the model perform well?

- Model evaluation daily discharge
- Spatial output
- Existing problems

Kiel University Remote Sensing & Environmental Modelling

Introduction

Methods

Results and Discussion

Conclusion and Outlook

- Integrated river basin models should provide a spatially distributed representation of basin hydrology and transport processes
- HRU approach key weakness of the model
 - inability to model flow and transport from one landscape position to another prior to the entry into the stream
 - the impact of an upslope HRU on a downslope HRU cannot be assessed
- Fulfill the requirements of river basin models
 - developing routing capabilities between landscape units (Volk et al., 2007; Arnold et al., 2010)
 - developing a grid-based SWAT model setup (Rathjens and Oppelt, 2012)

SWAT landscape model

Figure 4. Processes considered in landscape routing units.

Arnold et al. (2010)

C | A | U 🧶

SWATgrid

- Interface for grid-based SWAT setups
- SWAT processes are calculated for each grid cell individually

Grid-based SWAT landscape model

Kiel University Remote Sensing & Environmental Modelling

- Channel flow
- Landscape flow
 - Surface runoff
 - Lateral flow
 - Shallow groundwater flow

The combination of the landscape routing model and a grid-based setup provides a spatially fully distributed model.

Grid-based SWAT landscape model

- Link channel and landscape flow processes to the watershed-scale \rightarrow spatial description
 - Topographic index

$$\lambda_i = \ln\left(\frac{A_i}{\tan(\beta_i)K_{sat\,i}Z_i}\right) \in \mathbb{R}_{\geq 0}, i = 1, \dots, n$$

- normalize
- adjust to drainage density
- Flow separation ratio

Surface slope angle (β_i) Soil depth (Z_i) Saturated hydraulic conductivity $(K_{sat,i})$ Upslope contributing area (A_i)

No additional data is necessary!

Environmental Modelling

Kiel University

Remote Sensing &

Study area: Little River Watershed

- 334 km², flat topography, gently sloping uplands, dense streamnetwork (1.54 km⁻¹)
- Subtropical climate
 - Mean annual TMP 19°C
 - Mean annual PCP 1059 mm

Study area: Little River Watershed

Flow separation ratio

Kiel University Remote Sensing & Environmental Modelling

Х

Flow separation ratio

Stream flow

Periods	PBIAS [%]	NSE]
		Daily	Monthly	Daily	Monthly	
Calibration (2004)	7.18	0.59	0.92	0.60	0.92	
Validation (2005 – 2008)	8.96	0.63	0.79	0.65	0.82	
Entire Period	8.50	0.62	0.81	0.63	0.83	
2004	20	05	1 2006	Dete	1 2007	I 2008

Spatial results

Conclusion

Why grid-based modeling with SWAT?

- spatially fully distributed model
- spatial output

How does the grid-based model work?

- Combination of a grid-based setup and the SWAT landscape model
- Landscape and channel processes (flow separation ratio)

Does the model perform well?

satisfactory

- Daily streamflow NSE > 0.59
- Reasonably simulation of the impact of landscape positions on surface runoff, subsurface flow and evapotranspiration
- Problems and difficulties
 - Computation time (larger watersheds)
 - Requires high resolution input data
 - Uncertainties in flow separation ratio

13

Kiel University Remote Sensing & Environmental Modelling

Thanks for you attention!

Contact <u>rathjens@geographie.uni-kiel.de</u> +49 431 8805642

