

Bienvenue !! Welcome Willkommen

Recent SWAT Developments and Future Directions

- 2013 UN International Year of Water Cooperation
- Increasing Demand for Water decreasing availability
- 6-8 Million People Die Annually from water related disasters and diseases
- 3.5 planets Earth would be needed to sustain a global population with the current European/N. American lifestyle
- Next 40 years population growth of 2-3 billion and increase in food demand of 70%
- Agriculture accounts for 70% of freshwater withdrawals

Why are we here?

- 148 countries have international basins within their territory
- 276 transboundary river basins in the world (46% of world)
- 90% of wastewater in developing countries flows untreated
- 80% of water worldwide is not collected or treated

SWAT and other water resource models can provide science-based decision support for water management, land use and management, climate change, food production, and bio-energy production.
 Our work is having tremendous impact on global

water resources management.

2006 Soil and Water Assessment Tool

Model Developer's Workshop

October 3 - 6 2006

Potsdam Institute for Climate Impact Research Potsdam, Germany Valentina Krysanova and Fred Hattermann

TOPICS:

- (1) Landscape Processes (riparian, floodplain, overland routing and sediment),
- (2) Channel Processes (sediments and pollutants),
- (3) Nutrients, Carbon, and Bacteria (uplands),
- (4) Plant Growth,
- (5) Version Control and Modular Systems, and
- (6) Tools (GIS, climate interpolation, crop generator, autocalibration & uncertainty).
 - Special Issue: Hydrological Sciences Journal 53(5)

(1) Landscape processes

- Two papers (Arnold et al., 2010, Bosch et al., 2010) published on landscape routing (Riesel (TX) and Gibbs farm (GA)
- Landscape routing still under development
- Nadia Bonuma (Bonuma et al., 2013) included sediment transport capacity approach and used landscape routing (Brazil)
- Hendrik Rathjens, Martin Volk, Jeff Arnold develop grid version that include landscape routing (Little River Basin (GA))

(2) Channel processes

- Improved channel sediment routing (Balaji and Peter Allen)
- More realistic bed and bank erosion, bed and wash load, and improved flood plain deposition
- Improved BOD and dissolved oxygen (still using the modified QUAL2E approach
- Biofilm module Sabine and Jose

(3) Nutrients, carbon and bacteria

- C-FARM (Kemanian et al., 2010) and CENTURY (Zhang et al., 2013) included in SWAT for carbon dynamics
- Improved soil phosphorus routines
- Improved and validated tile nitrate routines
- Bacteria refined and validated, in-stream component developed

(4) Plant Growth

- Plant growth parameterized forest and energy plants – Jim Kiniry is leading
- Plant competition (water, light, and nutrients)
- Modified plant growth algorithm for the tropics
 (Michael Strauch and Martin Volk)
- Reworked management operation scheduling minor mgt file changes but more robust
- Real time soil moisture and plant status Jaehak Jeong

(5) Version control and modular systems

- Version control Nancy uses on daily basis
 - 1) Backup versions and notes
 - 2) Filemerge
 - 3) CoLab-access trunk and other versions
- Modular code JRW Library of modules Efficient platform for development Provide spatial and temporal framework Facilitate parallelization

(6) Tools (GIS, climate interpolation, crop generator, autocalibration & uncertainty)

- ArcSWAT and MapWindows continued development
- Web-based interfaces HAWQS, eRAMS, BASHYT
- Web-based spatial BMP tools Mazdak
- SWAT-CUP- Karim
- SWAT Check-Mike White

2013 Soil and Water Assessment Tool Model Developer's Workshop July 11-12, 2013

Paul Sabatier Université, Toulouse, France Sabine and Jose

TOPICS:

- (1) Landscape Processes (riparian, floodplain, overland routing and sediment)
- (2) River/landscape Continuum AND In-Stream processes, Flood plains, riparian, stream aquifers (spatial, flow sediments, nutrients and biology) + emergent contaminants (antibiotics, hormones, metals, pesticides)).
- (3) Plant Growth, competition, crop management
- (4) New technology (web based/training, Super computers, GIS, sensitivity, autocalibration, optimization, uncertainty analysis).

(1) Landscape Processes

Martin Volk, Nicola Fohrer, David Bosch, Hendrik Rathjens, Louis Thibodeaux, Xuesong Zhang

- Gridded landscape version at Tifton. Dynamic wetness index.
- Vertical profile transport of emerging contaminants
- Improved Lowland processes tile and groundwater
- Century carbon validation

(2) River Landscape Continuum and In-Stream Processes

Peter Allen, Jose Miguel Sanchez Perez, Mike White, Sabine Sauvage, Balaji

- Channel erosion, transport/deposition, pool/riffle
- Floodplain and riparian processes
- Particulate and dissolved organic carbon biofilm
- Contaminant transfer in-stream Kd
- Finite element groundwater model and MODFLOW link
- Rice paddy irrigation

(3) Plant growth and crop management Phil Gassman, Indrajeet Chaubey, Claire Baffaut, Michael Strauch, Jeff Arnold

- Updating crop parameters into single database
- Plant competition validation and development of agroforestry module
- Bioenergy crop improvements and stover removal
- Tropical conditions modifications
- Realistic planting and applications as a function of heat unit and time distribution

(4) New Technology Karim Abbaspour, Jaehak Jeong, Srini

- Objective function constraints
- Model structure uncertainty
- Sensitivity analysis routines
- Continue modularization
- Incorporate remotely sensed ET

2013 Soil and Water Assessment Tool Model Developer's Workshop July 11-12, 2013

Paul Sabatier Université, Toulouse, France

OUTCOMES/SUGGESTIONS:

- (1) Web-Site for Developers
- (2) Archive test data sets
- (3) Easy access to version code
- (4) Developer's manual and workshops

• What it is:

 A Library of Modules to: 1) honor Jimmy who developed many of the core processes all the models are built on and 2) move away from "proprietary ownership" to a truly global library supported and maintained at Temple.

• What it is not:

- Not a building
- A software system that "magically" disaggregates models and automatically builds models

• What it is:

 A library of modules OF the developers, BY the developers and FOR the developers

• What it can do:

- Provide a platform for efficient model development eliminates need to "rework" similar modules into multiple models
- Provide a spatial and temporal framework for model development
- Facilitate parallelization
- Ultimately, it will help define input databases
- Empower Developers!

- Why has the SWAT modeling effort been successful?
- True team effort
- Stable developers base (Jimmy has anchored for 50 years)
- Philosophy Open and Empower
- Empower Users Interfaces, Web site, Manuals, Training, Calibration Tools, Tools to Analyze Output, Data Development, Web Support Groups, Regional Groups
- Empower Developers JRW Library, Developer's manual and training, coordinated global effort, Developer's Workshops (Potsdam '06 and Toulouse '13)

SPECIAL OBJECTS (Modules)

DATA STRUCTURES (HRU)

INPUT DATA STRUCTURES:

Future Development

- Continued testing and module additions to the JRW Library.
 Documentation and on-line training.
- 2. Movement of nitrate, soluble phosphorus and pesticides across the landscape. Landscape → River interactions
- 3. Biofilm and improved in-stream kinetics
- Validation of large scale simulations (national and continental scale)
- 5. Web-based tools for running the model and scenario analysis

Merci !! Thank You Danke

Recent SWAT Developments and Future Directions

	JRW Lib	rary	
type plant_community_db character(len=4) :: name integer :: plants_com type (plant_init_db), dimension(:), allocatable :: pl end type plant_community_db type (plant_community_db), dimension(:), allocatable :: pcomdb type (plant_community_db), dimension(:), allocatable :: pcomdb	type plant character(len=4) ::: cpnm integer :: idplt = 0 real :: cht = 0 integer :: gro = 0 real :: laimx_pop = 0. real :: phuacc = 0. real :: phuacc = 0. real :: plaime = 0. real :: plnn = 0. real :: plnp = 0. real :: plpet = 0. real :: plpet = 0. real :: plpet = 0. real :: laimxfr = 0. real :: clai = 0. real :: strsa = 1. real :: strsp = 1. real :: pop_com = 0. integer :: curyr_mat = 0. real :: fr_n = 0. real :: fr_p = 0.	n In/a Inone Im Inone Inone Ifrac Im**2/m Ikg/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Ikg P/ha Imm H2 Imm H2 Imm H2 Inone Inone Inone Inone Inone Inone	 4 letter crop name land cover code from plant.dat canopy height land cover status code dormancy status code frac of plant heat unit acc **2 leaf area index land cover/crop biomass a amt of nit in plant biom 20 act ET simduring life of plant 20 potl ET sim during life of plant 20 potl ET sim during life of plant /(kg/ha) opt harvest index frac of tot plant biomass in roots frac of pot plant growth-ni stress frac of pot plant growth-p stress
Plant community datafile 2 Number of communities in data file TRGR 2 frse 8 1 1400. 1.0 100. 0.1 500. 25. 1. evergreen forest ryeg 44 1 1400. 0.5 200. 0.15 60. 0. 1. rye grass ground co TUNL 7 Tunnel plant community with 7 plants sonu 113 1 3400. 1.0 50. 0.1 8. 0. 1. sonu Sorghastrun bocu 114 1 3400. 1.0 50. 0.1 8. 0. 1. bocu Bouteloua co soca 115 1 3400. 1.0 50. 0.1 8. 0. 1. soca Solidago car scsc 116 1 3400. 1.0 50. 0.1 8. 0. 1. scsc Schizachyriu tral 117 1 3400. 1.0 50. 0.1 8. 0. 1. tral Tridens albesce saaz 118 1 3400. 1.0 50. 0.1 8. 0. 1. deil Desmanthus ill	over n nutans urtipendula nadensis m scoparius ens a inoiensis		

2006 Soil and Water Assessment Tool Model Developer's Workshop

October 3 - 6 2006

Potsdam Institute for Climate Impact Research Potsdam, Germany

33 participants:

Australia, Canada, France, Germany, India, Italy, Netherlands, Spain, Switzerland, UK, USA

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Recent Development

SWAT Modeling Strategy

- Channel can be added across the valley bottom
- Multiple HRUs in the hill slope and valley bottom can be used
- Multiple "subwatersheds" with representative hill slopes can be used within a subbasin.

Draft: Peter Allen, Jeff Arnold, Martin Volk, 2012