

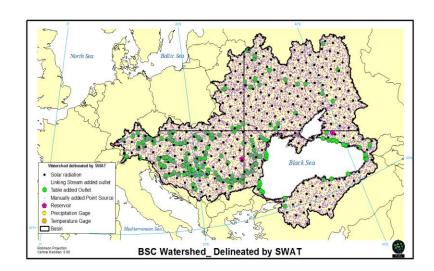
Climate Change Vulnerability in the Black Sea Catchment

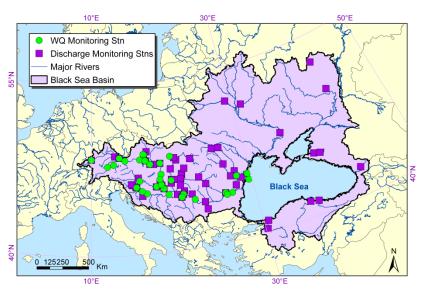
Roger Bär and Anthony Lehmann

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Source:

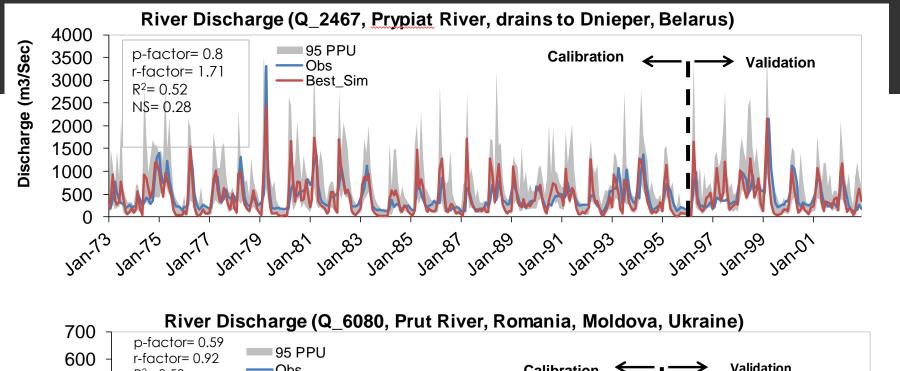
UNEP/DEWA/GRID-Europe

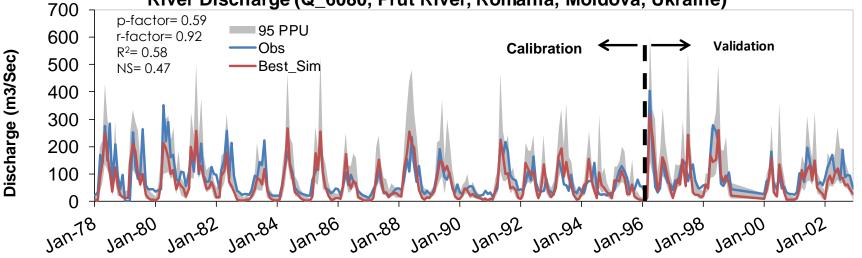

The EU enviroGRIDS project: April 2009- March 2013


- Black Sea catchment (2.2mio Km², >150mio inhabitants)
- Data sharing through GEOSS and INSPIRE
- Nutrients loads in the Black Sea?
- Global change impacts on water resources (climate, land cover, population)?

from Elham Rouholahnejad et al. Water resources quantity and quality in Black Sea Basin SESSION K3: LARGE SCALE APPLICATIONS

- Arc SWAT 2009
- 12982 subbasins
- 89202 Hrus
- CRU data sets as weather data
- Modis land cover
- Agricultural management for Wheat, Maize and Barely
- ET calculation based on Hargreaves Method
- Daily step SWAT run and monthly output printing was selected
- 37 yrs of simulation, 3 yrs warm up period(1970-2006)
- Each run 42 hours on a super power machine §





River Discharge results

from Elham Rouholahnejad et al.

Water resources quantity and quality in Black Sea Basin SESSION K3: LARGE SCALE APPLICATIONS

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Vulnerability Assessment of Agricultural Water Resources

Vulnerability = Potential to get harmed

Objectives

- Assess over all vulnerability for Agriculture
- Identify vulnerable regions
- Decompose results
- Offer a country comparison

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Assessing Vulnerability

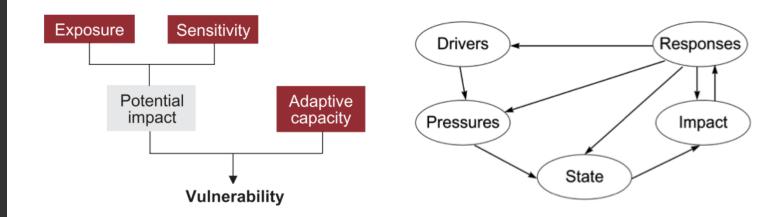
"How can vulnerability be measured?

Strictly speaking it cannot, because vulnerability does not denote an observable phenomenon [...]".

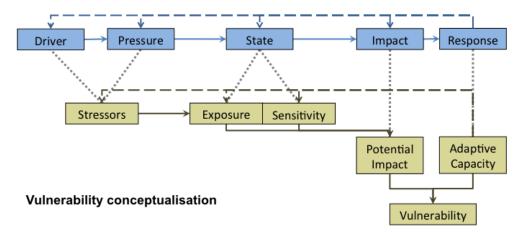
Need to make the concept operational

Source:

Hinkel, 2011

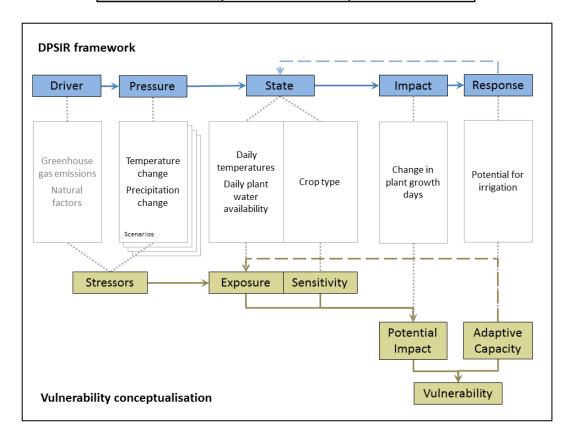

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Source:


Upper left: Allen Consulting Group 2005

Upper right: Smeets & Weterings 1999

Conceptualising Vulnerability


DPSIR framework

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Contextualisation for the Black Sea project

	No Change in Temperature	3°C Increase in Temperature		
No Change in	Recorded Data	Temperature Change		
Precipitation	(RD)	(TC)		
30% Decrease in	Precipitation Change	Combined Change		
Precipitation	(PC)	(CC)		

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

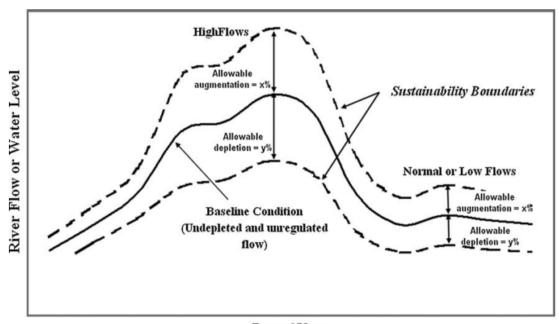
Operationalization

Discrepancy between the theoretical framework and the actual analysis method

Embed vulnerability framework in SWAT

Indicators

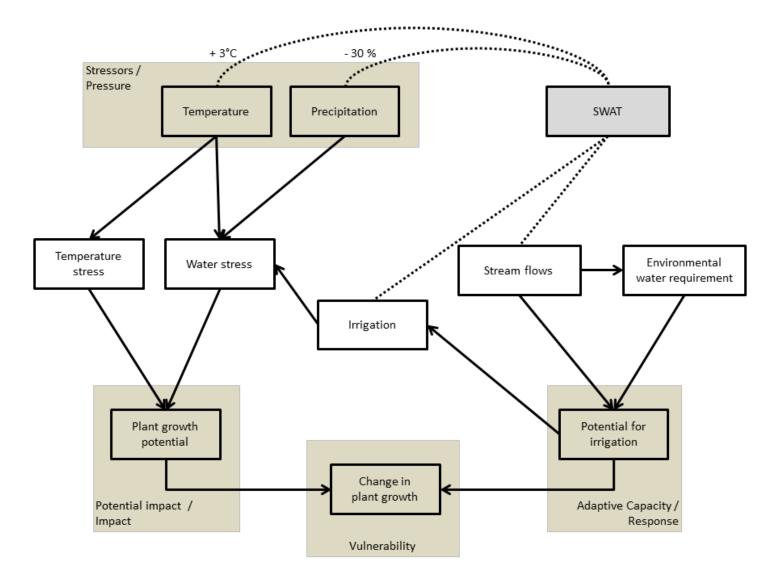
Temperature stress

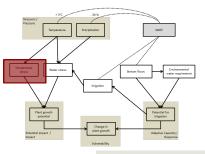

A temperature stress day is as day when the average daily air temperature is below 5°C or above 35°C

Water stress

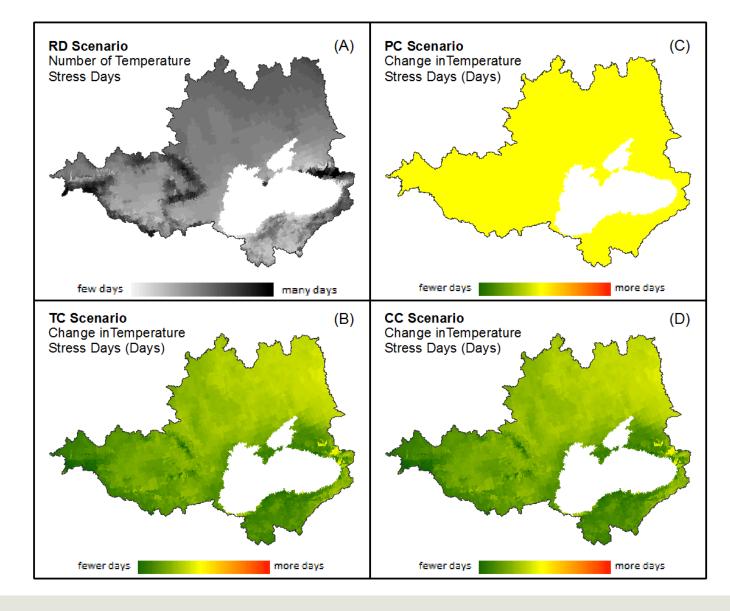
A water stress day is a day where the average daily evapotranspiration (minus irrigation water) is less than half of the potential daily evapotranspiration.

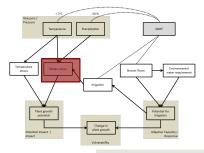
Environmental water requirement

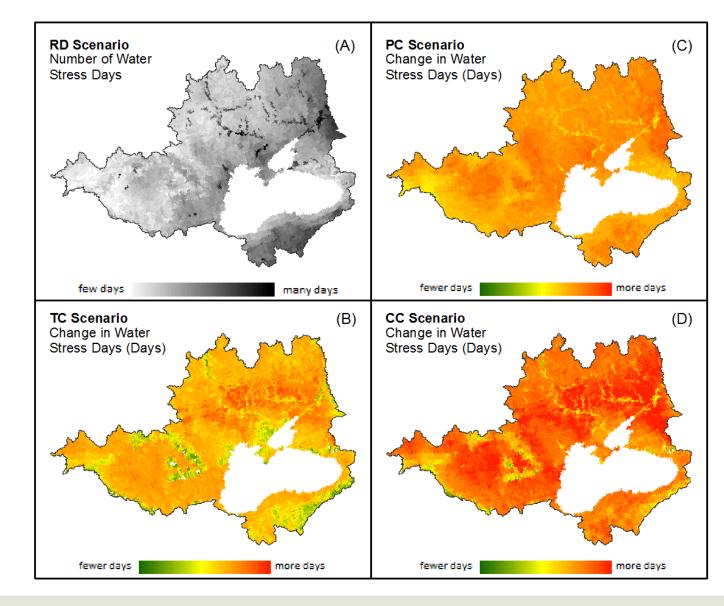

The daily environmental water requirement is estimated by calculating 80% of a 10-year average stream flow for each respective day.

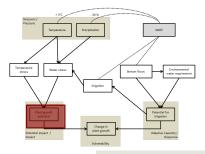

Day of Year

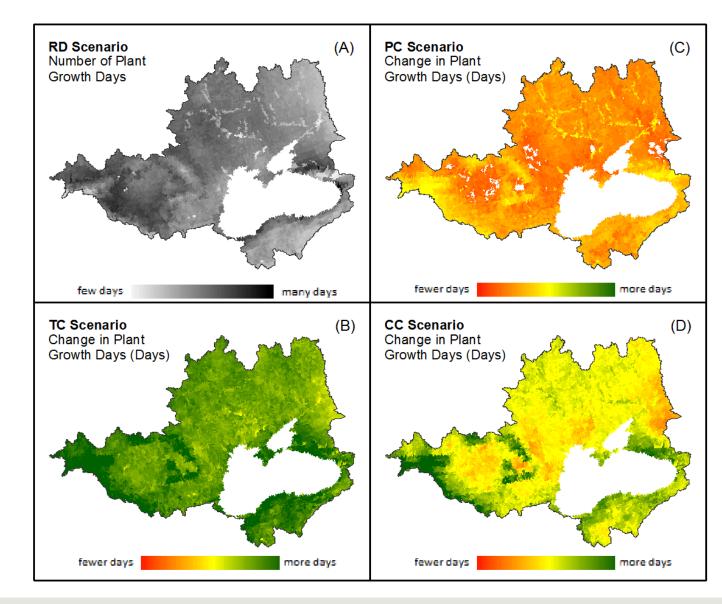
- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

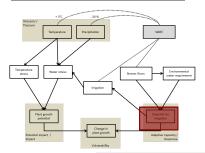

Methodology

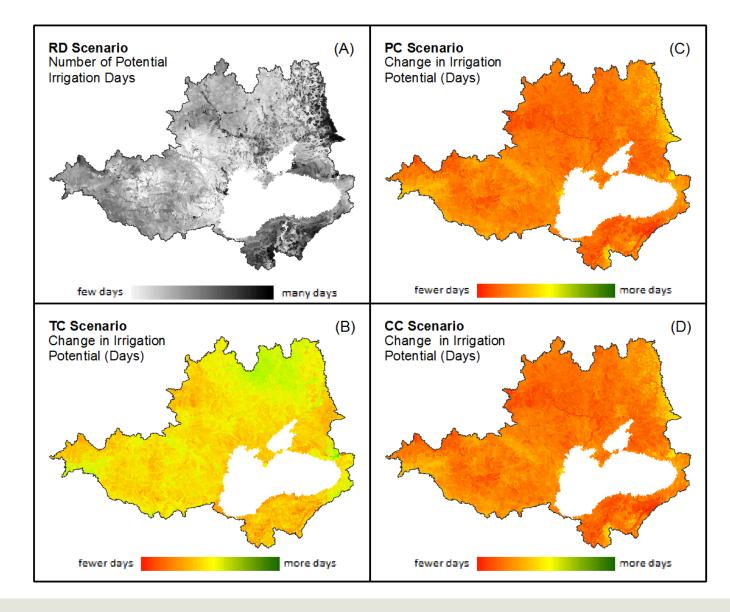

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

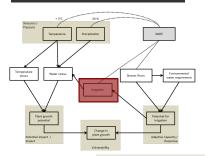

Temperature Stress

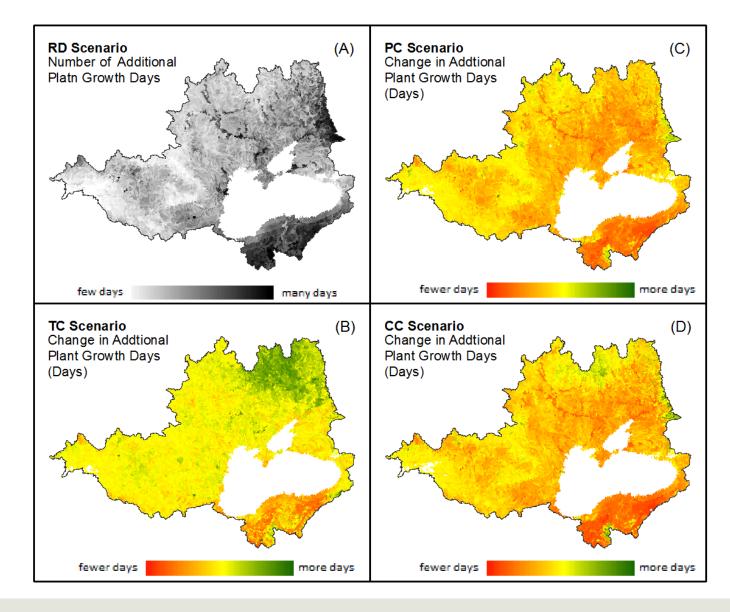

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion


Water Stress

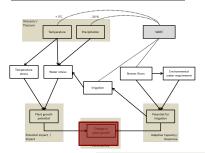

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion


Potential Climate Change Impact

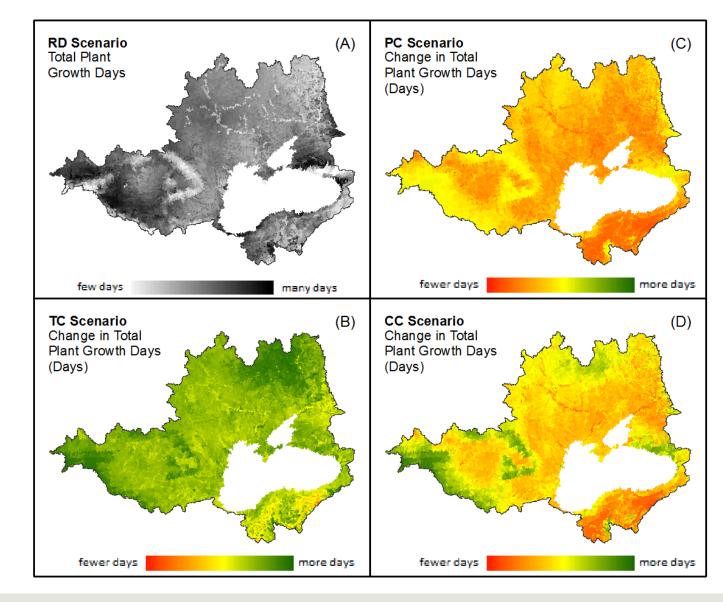

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion


Irrigation Potential

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion



Adaption by Irrigation



1. Introduction

- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Water Vulnerability for Agriculture

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Country Comparison

Country	Total Number or Plant Growth Days under the RD Scenario	Change in Total Plant Growth Days (CC)	Change in Natural Plan Growth Day: (CC)		re Change in	Addtional SS Plant Growth	Change in Potential Irrigation Days (CC)
Albania	76.2	18.5	28.1	-44.9	-37.3	-3.0	-3.9
Austria	188.9	12.8	21.5	-39.1	29.6	-4.4	-49.7
Belarus	171.7	-7.1	7.1	-31.0	21.6	-8.9	-92.6
Bosnia Herzegovina	205.5	6.9	18.2	-36.1	33.6	-5.9	-60.3
Bulgaria	168.4	-13.5	16.8	-35.0	35.8	-16.5	-68.3
Croatia	215.3	2.7	8.1	-35.0	45.8	-4.9	-65.8
Czech Republic	182.5	-7.8	-7.3	-36.4	56.7	-9.0	-95.5
Georgia	149.4	1.3	16.6	-32.1	15.1	-9.2	-39.6
Germany	208.0	8.2	27.5	-40.0	33.1	-4.1	-74.9
Hungary	184.0	-14.1	-9.0	-34.0	61.1	-9.6	-75.0
Italy	100.8	31.4	46.6	-45.7	-19.0	-1.0	-6.5
Montenegro	136.1	14.3	29.4	-39.9	-9.9	-6.7	-32.3
Poland	169.4	7.2	15.8	-34.7	4.7	-4.8	-62.5
Moldova	168.9	-17.8	1.0	-32.5	26.1	-13.7	-71.4
Romania	166.7	-10.1	3.8	-33.9	35.0	-9.8	-67.5
Russia	158.2	-8.0	12.0	-28.8	15.3	-8.2	-64.7
Serbia	193.3	-6.6	-1.9	-34.8	54.5	-8.6	-69.6
Slovakia	176.7	-5.4	-3.9	-34.8	39.6	-8.7	-71.8
Slovenia	212.6	13.7	22.6	-36.6	27.5	-2.2	-49.3
Switzerland	61.5	39.8	57.1	-45.1	-43.4	-0.1	0.9
Macedonia	179.6	-4.4	6.4	-36.4	43.6	-6.8	-46.7
Turkey	172.9	-33.5	-1.1	-37.0	38.5	-40.7	-89.2
Ukraine	166.5	-14.3	-0.5	-31.1	33.4	-13.9	-81.5

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion
- Opposition of Potential Impact (+) and Adaption Capacity (-)
- Difficult to compare with other studies, but no opposing results (e.g. competition btw environment and agriculture)
- Improvements:
 - Use outputs from Climate Change scenarios and uncertainty;
 - Improve indicator and threshold definitions;
- Smaller discrepancy between the theoretical framework and the actual analysis method
- Appropriate combination of the two concepts, but DPSIR not convenient for climate change analysis

- 1. Introduction
- 2. Theory
- 3. Methodology
- 4. Results
- 5. Discussion
- 6. Conclusion

Main Results

- Agriculture plays key role as the larger water consumer
- Differences between regions (e.g. mountains and Turkey)
- Better natural conditions worse irrigation potential

Policy Implications

- Aggravated competition as irrigation will increase
- Sustainable water resource management (e.g. WFD)
- Effective and sustainable agronomic practices (deficit irrigation, waste water irrigation, pressurized irrigation systems)

Scope for Further Research

- Extent to other sectors of climate vulnerability
- Integrate water resources from groundwater

More on the enviroGRIDS project

благодаря

спасибі

teşekkür ederim

მადლობა გადაგიხადოთ

mulţumesc

спасибо

THANK YOU