

Improving Life through Science and Technology

Integration of SWAT into a realtime web-based DS tool for sugarcane irrigation management

Jaehak Jeong

2013 International SWAT Conference, Toulouse, France July 17-19, 2013

<u>Objectives</u>

- Develop and calibrate a SWAT model for simulating water balance within the HC&S sugarcane plantation
- Modify SWAT code to allow custom input/output, drip irrigation
- Build a web-based UI that operates SWAT water balance program on a daily basis

Maui sugarcane plantation

- 141 km² under cultivation
- Since 1869
- \$130M US dollars revenue
- 2-year harvest cycle
 - 100 tons/ha (dry weight)
- Water for irrigation:
 - Surface sources (rainfall dependent)
 - 16 deep brackish-water wells
- Irrigation:
 - 600 million litters a day
 - Drip irrigation

Maui Sugarcane Plantation

Texas A&M System

Key limiting resource is water

Motivation

(Water balance components as fractions of annual rainfall)

- Current water balance program lacks:
 - Soil moisture calculation
 - Crop growth modeling
 - Soil water plant interaction
 - Calculation of actual evapotranspiration
- A better tool is needed to support irrigation management

Operation units of the HC&S plantation

SWAT model development

Watersheds definition

Watersheds and streams definition

Subbasins Attribute table

	FID	Shape	GRIDCODE	Subbasin
Þ	0	Polygon	1	1
	1	Polygon	2	2
	2	Polygon	3	3
	3	Polygon	4	4
	4	Polygon	5	5

□ Streams Attribute table

_									
Г	FID	Shape	ARCID	GRID_CODE	FROM_NODE	TO_NODE	Subbasin	SubbasinR	
Þ	• 0	Polyline	5	1	1	4	1	4	
	1	Polyline	6	2	2	4	2	4	1
Г	2	Polyline	12	3	3	5	3	5	1
Г	3	Polyline	13	4	4	5	4	5	1
Г	4	Polyline	14	5	5	0	5	0	1

HRUs definition

- A landuse map was created with different dummy sugarcane crops between neighboring plots
- Soil map was recreated such that one plot has a predominant soil type.

SSURGO

ArcToolBox Preprocessing

Treated soil map

<u>SWAT code development</u>

- New algorithms for PET and actual ET estimation
- Crop growth
- Drip irrigation to apply to HRUs
- Interface for custom I/O
 - Precipitation and other daily weather input
 - Daily Irrigation
 - Special output for post-processing

Model parameterization (ET)

– – – Kc x 3 (Summer) – LAI (Field 905)

- Crop growth was parameterized for Hawaii sugarcane based on an already established crop coefficient curves.
- Hawaii ET model :
 - $ET_a = K_c X ET_{ref}$
 - $ET_a = ET_{ref}$ if $K_c = 1.0$
- SWAT
 - $ET_a = ET_{ref}$ if LAI = 3.0 and enough soil/plant moisture available

Estimated actual ET

Model Calibration (Crop Yields)

- Fields 202, 308, 312, 601, 905
- Average sugarcane yields for 2000-2011
- Calibration parameters:
 - Crop parameters
 - Biomass reduction by a burning operation (~15%)
 - Moisture contents in fresh yields (~65%)
 - GW and soil parameters

Estimated Average Crop Yields

Irrigation Decision Support System

<u>Summary</u>

- Rainforest water is the most influential factor that affects sugarcane productivity on Maui
- Irrigation Decision Support System (IDSS) is a web-based visual application of SWAT for predicting daily water balance of the HC&S sugarcane plantation
- Using custom watershed/river definitions, ArcSWAT 2009 created a SWAT model that precisely resembles the real plantation
- SWAT predicted lower ET than the crop coefficient method by 33 percent/yr for a upland field with the consideration of soil moisture
- Predicted sugarcane yield compares well with measured values
- Building SWAT into a fully real-time simulation tool is a major challenge
- ASP.NET is a useful framework to incorporate SWAT into a webbased simulation tool, feeding on relational databases

2013 International SWAT Conference Toulouse, France, July 17-19, 2013

Jaehak Jeong Email: jjeong@brc.tamus.edu

