Soil-landscape modeling to predict the spatial distribution of soil attributes for environmental applications

2013 International SWAT Conference Toulouse, France

Feras Ziadat¹, Raghavan Srinivasan², David Shoemate², Jaclyn Tech², Nurhussen Seid³, Dhanesh Yeganathan²

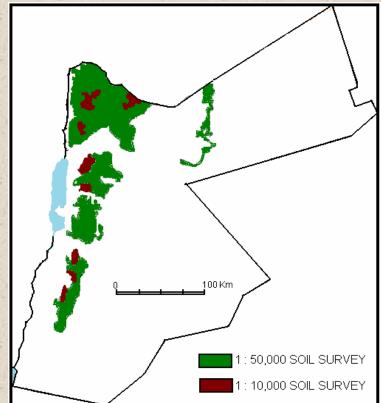
International Center for Agricultural Research in the Dry Areas, Amman, Jordan
Spatial Sciences Laboratory, Texas A&M University, College Station, USA
Burie Agricultural College, Burie, Ethiopia

Motivation .. Why predicting soil attributes

Rational for new program

Structure of the program

Applications


Future

Soil Survey Data

Limitation of soil maps:

The coverage, especially with enough details, in dry areas is usually limited. The cost of extending this coverage is high. Example: Jordan ...

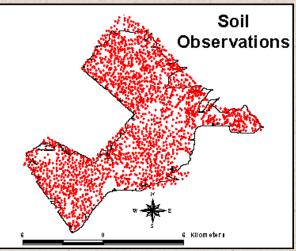
1:250,000: The whole country 1:50,000: 20 % of the country 1:10,000: 2 % of the country

Soil Survey Data

Limitation of soil maps:

The purity of mapping units is usually low, leads to erroneous conclusions when used for sitespecific decisions

Modern environmental applications and modelling require information about the spatial distribution of lateral and vertical soil attributes

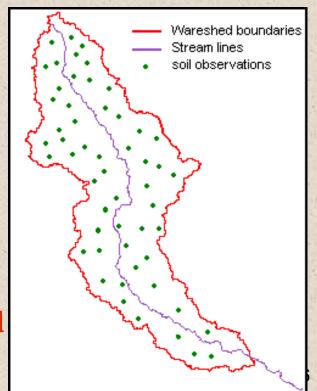

ALTERNATIVE SOURCES OF SOIL INFORMATION

Prediction of soil attributes using terrain attributes

Terrain attributes derived from 20-m resolution DEM to predict soil attributes by implementing different statistical and clustering techniques.

	10W
	ntbut
onifi	cant but low
corr	19
	eoression ficients
ON	sicients
coe	

Terrain attribute	Soil depth		
	cm	5-	
CTI†	-0.10**		
Aspect	-0.15**		
Curvature	-0.10*	-	
Plan curvature	-0.05*		1
Profile curvature	-0.05*		
Slope degree	-0.23**		Č,
Slope percent	-0.23**	5.	
Aspect (CA) [‡]	-0.10**		6
Curvature (CA)‡	-0.15**		
Plan curvature (CA)‡	-0.12**		
Profile curvature (CA)‡	-0.14**		6
Slope degree (CA)‡	-0.16**		S
Slope percent (CA)‡	-0.16**		
Contributing area	-0.10**		•
Relief (CA) [‡]	-0.04		
Regression coefficients §	0.07		

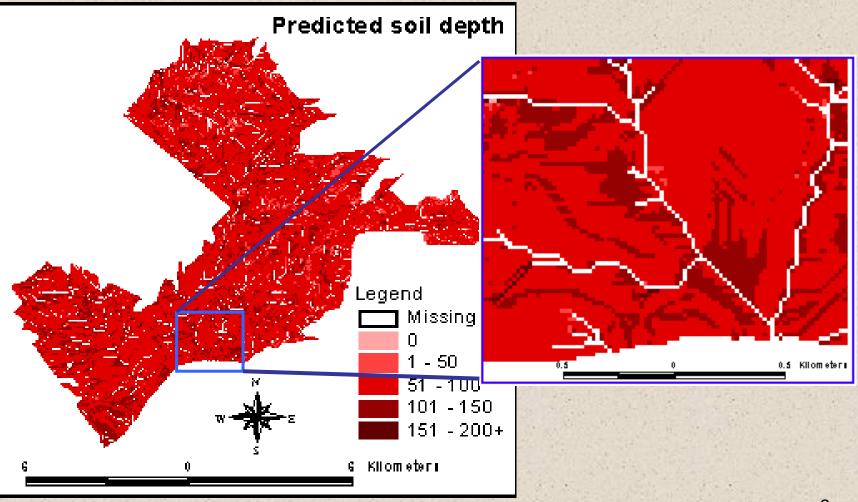

Statistical interpolation

Better regression coefficients between soil attributes and terrain attributes within selected sub-watersheds

Rational: stream lines divided the watershed into two subdivisions

Each sub-division is constitutes of endless number of <u>catena</u>

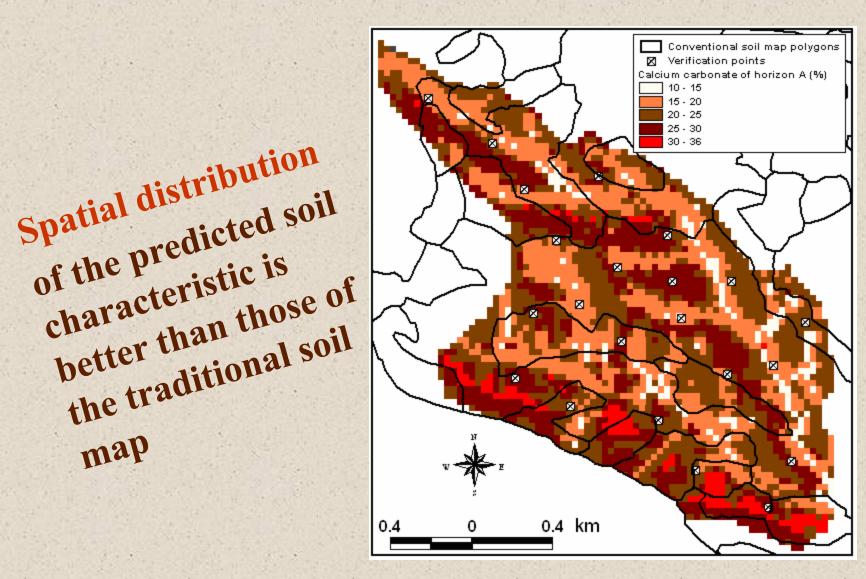
Within each sub-division there is a unique relationship between soil and topography



Linear models that utilize terrain attributes to predict soil attributes within each class are generated

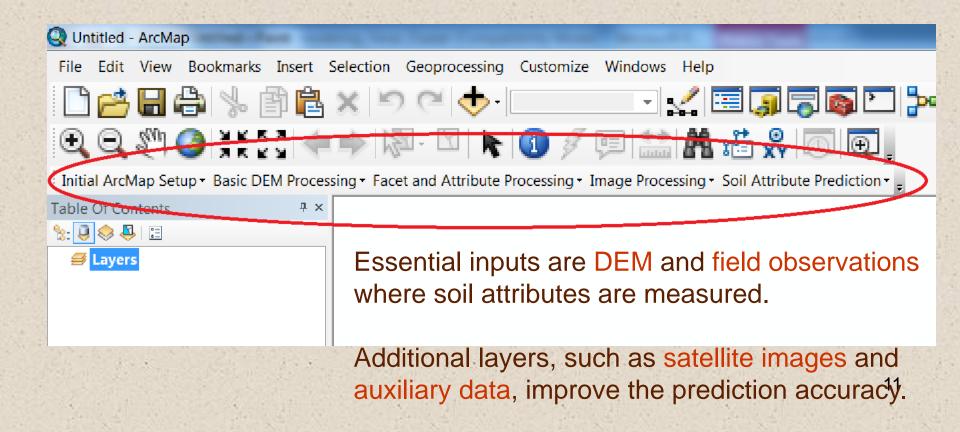
	Example: Soi	l depth		Model p	arameters			
			Slope			Contributing		
	Class no.	Constant	percent	Curvature	Aspect	area	CTI	R^2
	1	91.31	-20.69	1413.77	-1.63	-0.68	14.04	0.50
	2	138.51	-21.07	199.44	-1.62	0.64	-9.24	0.42
	3	75.21	6.42	-228.15	1.31	-0.66	3.81	0.04
	4	108.47	-14.09	-1169.10	-0.84	0.46	-1.08	0.29
è	5	84.20	-1.22	-1058.66	2.73	0.26	-1.95	0.28
	6	118.45	-16.92	360.98	-2.13	-0.59	-0.26	0.31
	7	114.22	7.68	-227.30	-7.78	-1.06	2.87	0.32
	8	99.17	-23.15	-488.15	2.94	2.08	-6.00	0.27
	9	65.99	0.60	-160.83	1.88	0.30	-0.73	0.06
	10	109.84	22.38	-810.89	-6.95	0.26	-7.22	0.25
	11	89.11	1.00	-40.95	-4.65	-0.38	1.00	0.10
	12	152.42	-29.10	-917.58	-0.80	0.60	-13.49	0.20
	13	64.55	-12.06	41.60	3.95	0.02	10.30	0.17
	14	115.15	3.44	-128.27	-2.02	0.71	-7.44	0.15
	15	79.10	-10.40	-65.55	0.63	0.54	-0.86	0.15
	16	134.95	-12.38	29.22	-5.46	0.53	-0.06	0.17
	17	87.11	1.25	606.93	-0.46	0.66	0.23	0.17
	18	84.76	-12.08	-456.99	0.27	1.65	-9.35	0.33
	19	84.26	-10.55	-64.97	0.89	-0.17	2.73	0.06
	20	106.43	-4.03	34.68	-2.20	0.04	-4.27	0.05
	21	105.56	-12.22	-104.11	-1.68	-0.07	0.19	0.17
	22	48.76	-3.57	-263.73	-0.38	-0.15	12.01	0.27
	23	74.80	4.24	273.09	-1.22	-0.46	6.16	0.21
	24	63.30	-4.56	189.39	0.41	-1.37	23.11	0.25
	25	67.29	4.18	-30.50	-1.91	-2.41	18.12	0.33
	26	78.98	-7.03	182.08	1.29	-0.12	6.48	0.17

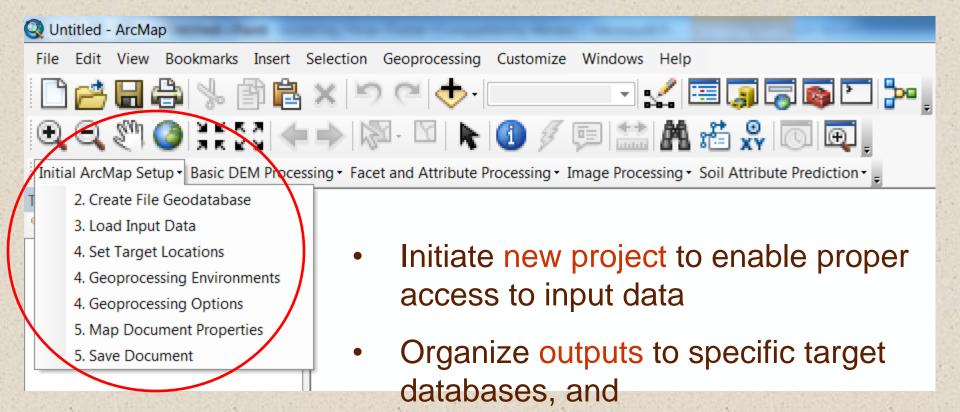
7


Regression models are applied for each class and predicted soil attributed are generated for the whole study area

Accuracy of the predicted soil characteristics was generally comparable with those derived from traditional soil map (scale 1:5,000)

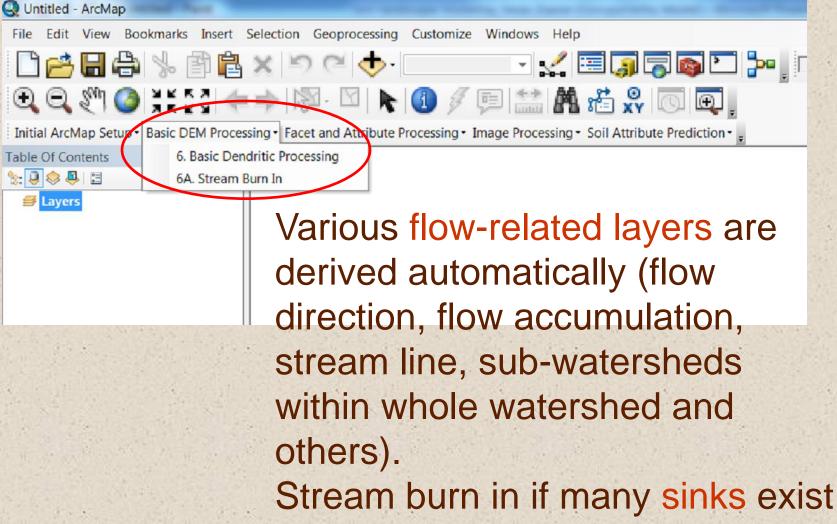
Chemical, physical, and soil fertility related attributes for the surface and sub-surface soils


	RMSE	RMSE		RMSE	RMSE
Soil variables	Prediction	Soil map	Soil variables	Prediction	Soil map
Carbonate % A ^(a)	3.4	8.6	Silt % A	13.5	10.6
Carbonate % B ^(a)	10.5	16.0	Silt % B	24.5	23.1
Organic Matter % A	0.5	0.4	Clay % A	7.1	12.8
Organic Matter % B	0.4	0.4	Clay % B	24.1	30.4
pH A	0.3	0.7	Depth (cm) A	6.4	11.0
pH B	3.4	3.8	Depth (cm) B	35.5	53.3
EC (dS/m) A	0.3	0.4	Soil Depth (cm)	33.5	56.8
EC (dS/m) B	0.8	1.4	No .of horizons	1.1	1.4
Bulk Density (g cm ⁻³) A	0.2	0.2	Stone % A	10.8	12.6
Bulk Density (g cm ⁻³) B	0.6	0.7	Stone % B	20.8	11.1
Sand % A	14.1	18.2	Surface stone %	13.1	23.2
Sand% B	8.7	12.2			

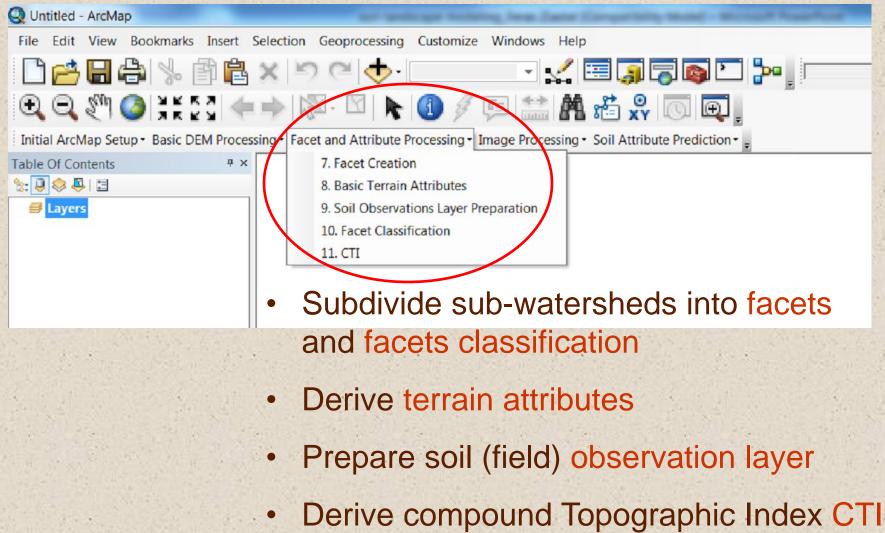

Structure of the program

User-friendly toolkit to predict soil attributes: Stand alone OR Sub-model within SWAT

SLEEP – Soil-Landscape Estimation and Evaluation Program

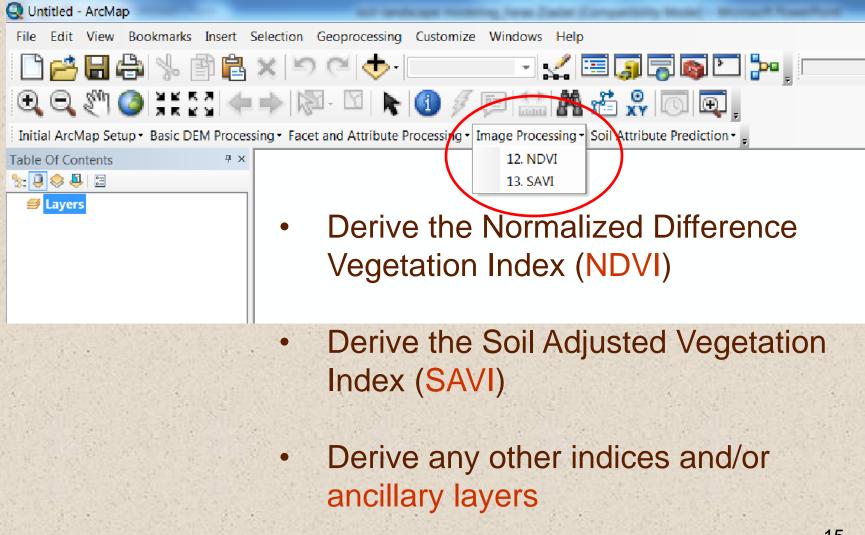


Initial ArcMap Setup

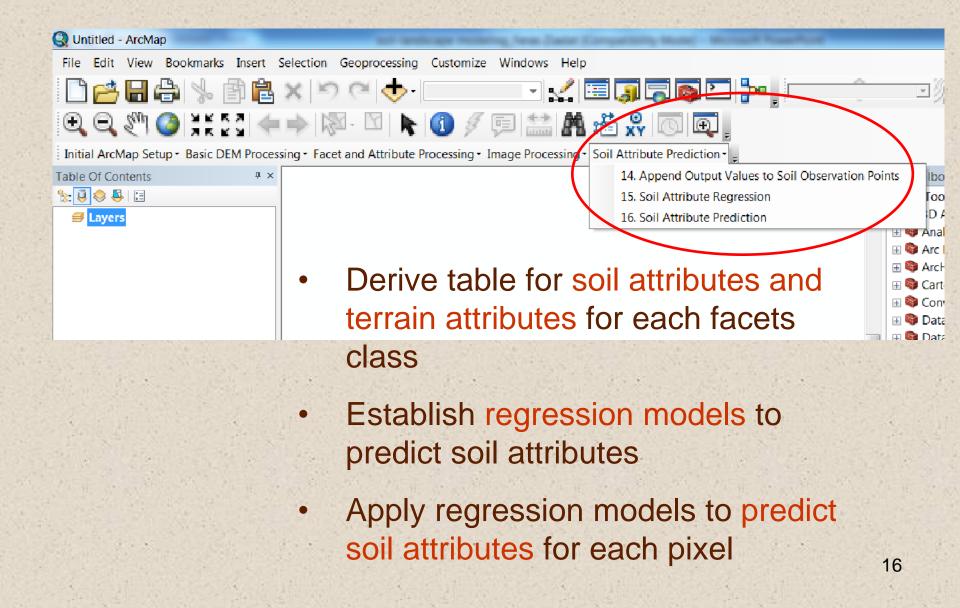


Avoid duplication of files in case of running many iterations

Basic DEM Processing



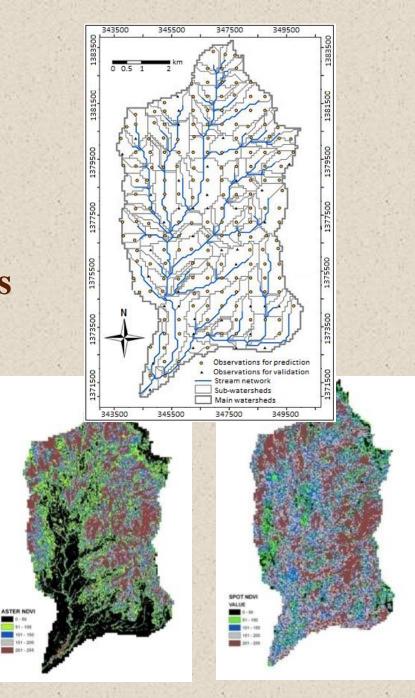
Facet and Attribute Processing



14

Image Processing

Soil Attribute Prediction

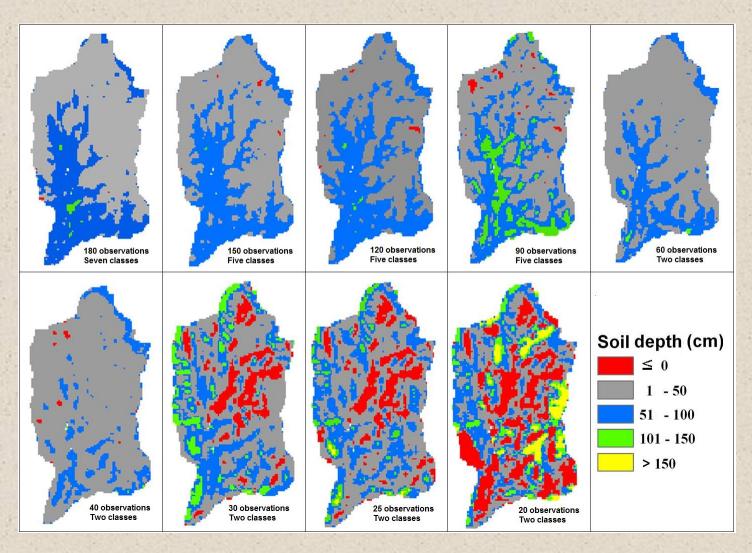


Application in Ethiopia

Using SRTM 90m

NDVI from ASTER images At two different dates

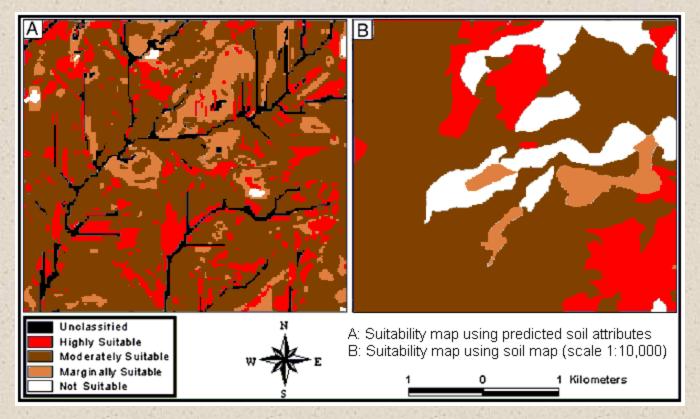
180 observations used for Prediction and 40 for Accuracy assessment



Testing accuracy using few observations to minimize the field work and maintain accuracy

Percent of observations predicted correctly within \pm 50 cm range from field observed soil depth values

No. of observations used	Percent of predicted observations (%)
180	97.5
150	km 95
120	92.5
90	87.5
60	№ 87.5
40 ned a	72.5
30 sterst	67.5
150 120 90 60 40 30 25 Watershed are	65
20	35


Prediction of soil depth using different number of observations

Example of application: suitability analysis

Accuracy of the suitability classification derived from predicted soil attributes is comparable with those derived from traditional 1:10,000 soil maps

Spatial distribution of suitability classes derived from the predicted soil attributes indicated more realistic pattern

Future ...

Launch the program with documentation and help package

Encourage applications at various levels and purposes with minimum input from the field

Example: compare SLEEP predicted soil attributes with statistical interpolation and soil maps on the performance of SWAT in Ethiopia

Continuous development of the program ...

Thank You ...