

Significance of Uncertainty in Evapotranspiration Estimates on Water Balance Modeling in SWAT

Ali M. Sadeghi¹, Peter C. Beeson¹, Craig S.T. Daughtry¹, Jeffrey G. Arnold², Martha C. Anderson¹, Christopher Hain³, Joseph G. Alfieri¹ and William P. Kustas¹

> (1) USDA/ARS- HRSL, Beltsville, MD; (2) USDA/ARS- Grassland, Soil & Water Research Laboratory, Temple, TX (3) Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD

2013 International SWAT Conference (July 15-19) in Toulouse, France

Introduction

In water quality models, such as SWAT, accurate forcing of Potential ET (PET) is for producing reasonable crucial predictions of water budget components, sediment and other pollutant loads from larger river basins. Methods and data, needed to compute PET, vary in space and time such as air temperature, vapor pressure, wind speed, and solar radiation. In SWAT, PET is required as an input and is either computed internally by the weather generator using available weather data by a choice of three different methods: i) Priestley-Taylor; ii) Penman-Monteith; and iii) Hargreaves methods, or calculated by an external source and provided to SWAT as an input. The actual ET (AET) is then calculated in SWAT based on available water, crop and soil moisture conditions. Most often, the modelers rely on the models to simply match AET annual means, provided by the literature values, when calibrating the models due to sparse data. For this study, we used three methods to calibrate AET parameters: i) basinwide/annual (using literature values); ii) subbasin/monthly (using Atmosphere-Land Exchange Inverse (ALEXI) model output); and iii) HRU/daily (using the NDVI/crop coefficient method from two *in situ* towers in corn and soybean fields).

South Fork of the Iowa River

Yearly / Basin:

Typical SWAT calibration uses annual average from one source of Potential ET only depending on overall water budget.

Data

Monthly / Subbasin:

The Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et al., 2007a,b) was designed to minimize the need for ancillary meteorological data while maintaining a physically realistic representation of land-atmosphere exchange over a range in vegetation cover conditions using remotely sensed data.

Daily / HRU:

Conservation Effects Assessment Project (CEAP) • One of 15 CEAP Watersheds. • Watershed area = 788 km² • 84% cropland with 99% planted to corn + soybean. • Hydric soils with many potholes and extensive tile drainage.

A two-source model (soil + vegetation) energy balance model is applied in a time differential mode, coupled with an atmospheric boundary layer (ABL) model to internally simulate landatmosphere feedback on near-surface air temperature and surface fluxes. This reduces sensitivity to LST retrieval errors.

Micrometeorological and Surface Flux measurements were collected in adjacent Corn and Soybean fields during the growing season. Measurements included: Humidity, Air Temperature, Wind Speed/Direction, Turbulent Energy (H & λE) and CO2 Fluxes, Four Component Radiation Budget (Rn, $K\downarrow$, etc.) Daily means were also calculated.

Daily

HRU:

Background

Corn Production Increased to Meet Biofuels Goals

Yearly / Basin:

Results

This is only sufficient for annual

calibration.

Monthly / Subbasin:

Corn and Soybean Production in the South Fork 2000-2011

Objectives:

•Develop Decision Support System \rightarrow Address water quality concerns while meeting the landowner's objectives

•Optimize Yield/Protect Water Quality \rightarrow Residue management, crop rotation, and other practices needed on a site-specific

SWAT Model Scenarios: Calibrated from Beeson et al, 2011; actual crop sequence 2000-2010 from CDL, tillage, fertilizer, NEXRAD/rain gauge data and seven PET sources.

SWAT2009:

Proven to be an effective tool for evaluating the impacts of landuse changes on water quality, allows water resource assessment, and has been used to solve nonpoint source pollution problems across the globe (Arnold et al., 1998; Arnold and Fohrer, 2005).

SWAT's Major Components:

•Hydrology (water balance) •Pesticides •Weather •Groundwater (actual/simulated) •Lateral Flow •Sediment •Bacteria •Nutrients (Nitrogen & Phosphorus) •Management Scenarios •Crop Growth

Future Work: Expand remotely sensed estimation of ET for