SWAT 2013 Toulouse France

SWATing your APEX model: A how to from the trenches

Claire Baffaut, Carl Bolster, Nathan Nelson, Mike van Liew, Jeff Arnold, Jimmy Williams July 17-19, 2013

Agricultural Research Service

the in-house research arm of the U.S. Department of Agriculture

Introduction

> EPIC

- Field scale
- developed in the 1980's from CREAMS, GLEAMS and CENTURY with crop growth routines
- > APEX
 - Small watersheds
 - developed in the 1990's from EPIC and additional routing and groundwater routines.
- > SWAT
 - > Watersheds
 - developed in the 1990's from EPIC, CREAMS and GLEAMS with additional routing routines.

Historical Development of APEX

Wang et al. 2012. EPIC and APEX: Model Use, Calibration, and Validation. Trans. ASABE 55(3).

Historical development of SWAT

Arnold et al. 2012. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 55(3).

Rationale

Context: use of APEX and SWAT within the same study

- Understanding scale effects
- Water quality trading
- Use of the flexibility of APEX with the scale possibility of SWAT for larger watersheds.
 - Semi-distributed aspect of SWAT
 - Lumping of HRUs

Need for APEX and SWAT to be equivalent

- When calibration/validation data are available at only one scale.
- To ensure that there is no bias between flow, sediment loads, or pollutant transport out of HRUs simulated with APEX and SWAT.

Provide guidance to parameterize APEX and SWAT in such a way thay they are as equivalent as possible

- Selection of algorithms
- Parameterization

- Find hard-coded values in the SWAT code of many APEX input parameters: the APEX parm file.
- Compare algorithms using theoretical documentation and code: APEX 0806, dated October 2012, SWAT v581, also dated from October 2012.
- In some instances, demonstrate the effect of the differences.

Outcomes

- Options to select in APEX, or sometimes in SWAT, so that both models use the same algorithms.
- Values that the APEX S-shape parameters should have.
- Values that the APEX and SWAT input parameters should have: the APEX parm file and the SWAT bsn file and a few miscellaneous parameters.
- Identify unresolvable differences and demonstrate their effect.

S-shape parameters: definition

Outcome 1: S-shape parameters

ΑΡΕΧ	Description	SWAT	ΑΡΕΧ	ΑΡΕΧ	Comment
parameter		parameter	Parm1	Parm2	
SCRP(9)	Pest damage	Not simulated	NR	NR	Set PSTX to 0 in control file.
SCRP(1)	Root growth restriction by rock or coarse soil fragments	Not simulated	50.010	100.02	Eliminates the effect
SCRP(3)	Potential harvest index as a function of the fraction of the growing season	Hard coded	50.1	95.95	SWAT: 5:2.4.1 APEX: 282
SCRP(12)	Effect of soil depth on N volatilization	Hard coded	5.037	100.041	Very different from default APEX values
SCRP(10)	Effect of water stress on harvest index	Water stress quantified by different variables			SWAT: 5:3.3.1 APEX: 282

Outcome 2: Similarities and differences in runoff calculation

Similarities

- Both allow the curve number method
- Both vary soil water retention with either soil water content or ET.

Differences

- Variable used to calculate retention:
 - SWAT: Soil water wilting point
 - APEX: Soil water wilting point Field capacity – wilting point
 - Points to calculate the S-shape curve:
 - SWAT:
 - Wet conditions -> CN3
 - Saturation
 - APEX:
 - Average conditions -> CN2
 - Wet conditions -> CN3
- Wet conditions:
 - SWAT: field capacity
 - APEX: a user-defined point between field capacity and saturation

Calculation of retention

 $FCC = \frac{soil water - wilting point}{field capacity - wilting point}$

Frozen soil adjustment of retention

APEX

Adjust cnfroz_bsn as a function of dominant soils' curve numbers and desired effects.

- A much larger undertaking than initially thought
 - Many differences.
 - Differences are sometimes subtle.
- Not all the code has been reviewed and I invite others to participate in the effort and improve the document as differences are better understood or resolved.

Limitations

- APEX 0806, October 2012
- SWAT v581, ~ fall 2012
- Processes reviewed so far.

Challenges

- Typically, the theoretical documentation and the manuals lag behind the code.(true of any model).
- The APEX code is somewhat difficult to read.

Next Steps and Recommendations

- *Continue to fill in this document.*
- Understand the rationale for the APEX and SWAT expressions.
- Decide whether we want to make APEX and SWAT more similar:
 - Would produce very useful tools to study scale issues.
 - Link edge-of-field losses to watershed transport.