SWAT 2013 Toulouse France

Hui Shao, Claire Baffaut, Jiang Gao, Keqin Wang and Hujun Shang

July 17-19, 2013

西北农林科技大学 Northwest A&F University

the in-house research arm of the U.S. Department of Agriculture

Terrace Distribution in China

Terraces in Loess Plateau

Terraces in Southwest China

Terraces in Southeast Hilly Area of China

US Terraces

Sino-US Terrace Differences

	US Terrace	Chinese Terrace
Туре	Normal terrace	Mainly bench terrace
Original Slope	Mostly Less than 10%	Mainly between 5% and 46%
Barrier	Soil	Soil or stone bank
Drainage	Underground pipe or grass water way	Lined channel

Current methods to simulate terraces in SWAT

- Previous studies have represented terraces by changing the value of :
- ✓ Runoff effect: curve number (CN2)
- Erosion effect: slope length and USLE
 control practice factor (USLE P-factor)

References:

Arabi, M., J. R. Frankenberger, B. A. Engel, and J. G. Arnold. 2008. Representation of agricultural conservation practices with SWAT. *Hydrological Processes* 22(16): 3042-3055.
Waidler, D., M. White, E. Steglich, C. A. Jones, and R. Srinivasan. 2011. Conservation Practice Modeling Guide for SWAT and APEX. TR-399. College Station, Texas: Texas A&M University System.

Terrace algorithm development

- Segment simulation
- ✓ Runoff: SCS curve number
- ✓ Erosion: MUSLE method
- ✓ Nutrients: nitrogen & phosphorous
- Plant growth: optimal growth & stress

Cut

Cut

Map of normal terrace

Soil layer 2

Soil layer 1

Terrace storage effects

✓ Terrace output

SWAT Incorporation

The terrace algorithms were integrated into SWAT at the HRU level by creating a "sub-HRU" area with its own shape and soil system.

- Separate: soil, topography,
 - crop management
- ✓ Share: ground water
- ✓ Link: terrace output

(drainage, overland flow)

Flowchart of the terrace simulation algorithm

The terrace algorithm code was incorporated in SWAT model version 488. The terrace simulation activation subroutine is called in the HRU loop of a terraced HRU.

Model testing

Ottawa IAMS Site

Terraced Experimental Plots in China

Yunnan Province,

China

A previously published 2 year long runoff, sediment and total nitrogen dataset collected on 2 natural rainfall runoff plots (one control plot and one terrace plot) in southwest China was used for calibration and validation.

Terraced field scale plots in Kansas, US

Franklin,

KS

2004

ND

The modified SWAT model was evaluated using a 4-year long 6-plot event runoff and sediment data set with 5 years of plant yield data collected on a natural rainfall terraced field in southeast Franklin County, Kansas.

Watershed application tool development

The tool creates and modifies terrace inputs for the relevant HRU's in a watershed, and facilitates the application of the terrace model at watershed scale.

Watershed application – Study Area

Cropland 41%

Forest: 14%

Slopes: 2 – 64%

Upstream of Chejiachuan station of the Weihe River Basin

Watershed application – Problem

Weihe River Basin

Weihe River

Weihe river is the largest branch of the Yellow River. In recent years, the runoff and water resources have decreased a lot under similar rainfall level. Why? Water conservation measures in the upstream areas? Dams on the main reaches?

Preliminary Results

Model setup:

- No change of land cover in the terrace.
- No adjustment of CN with slope.
 Results: No changes in runoff, ET, and groundwater

Conclusions

- A process-based terrace algorithm was developed in SWAT to simulate the environmental effects of terraces, including normal terrace used in the US and bench terrace.
- Application results indicated successful performance of the terrace model at field and watershed scales.
- More applications on different types of terraces and soils will be needed for further validation and improvement of the model.
- Future development of a GIS tool to determine the terrace parameter values at the watershed scale will help effectively apply the model at larger spatial scales.

西北农林科技大学 Northwest A&F University

ARS CSWQRU Columbia, Missouri

Thanks for your attention!