Parameters optimization with field observed data and application in freeze-thaw area

Dr. Wei Ouyang

Wei@bnu.edu.cn

School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China

Main contents of report

Background and significance

- ➢ How to apply model to the area without enough data for validation.
- > The Chinese national soil database was constructed in 1970's.
- \succ The land use suffered intensive impact.

Study area

The selected Abujiao river watershed (47.25N, 134.02 E) with an area of 141.5 km² is located in the Northeast of China.

www.themegallery.com

Regional land use variation from 1979-2009

www.themegallery.com

Soil property response during land use variation

Ouyang W., Soil & Tillage Research, 2013

Parameters comparisons

• Screening for the key parameter

LH-OAT sensitivity analysis method in the SWAT2009 model.

• Parameter calculation based on field observed data

Parameter	Calculation methods		
SOL-ORGN、SOL-ORGP、 OM、USLE-K	Hypothesis and formula in the SWAT2009 theoretical documentation		
SOL_AWC 、 SOL-BD 、 SOL_K	SPAW (Soil - Plant – Atmosphere – Water System) model		
SOL_CRK	Empirical formula		

Results

Comparison of calculated parameter value based on the observed data and the calibrated parameter value

Temporal variation on NPS loading of two simulations

A simulation

B simulation

Interannual variation

	Index	TN in A	TN in B	TP in A	TP in B	
	Mean	85.26	82.61	0.93	0.99	
	St. Error. Of Mea	an 6.87	7.64	0.07	0.08	
	St. Error.	21.72	24.17	0.23	0.25	
40 -	Variance	471.91	584.07	0.06	0.06	
A simulation with validated	Range	63.94	63.63	0.65	0.85	
20 - A simulation with valuated	d value Min	46.49	55.28	0.62	0.46	
	Max	110.42	118.90	1.27	1.31	
91 B 30 10 00 00 00 10 10	R2	0	.809	0.6	30	
2° 2° 2° 2° 2° 2° 2° 2° 2° 2°	T tost t	0	0.583		-0.933	
1 40 ¬	P	0	.574	0.3	75	

- ✓ There was a considerable numerical difference on yearly non-point source (NPS) loading between two simulations.
- ✓ TP loading of two simulations shared the same variation regularity on interannual variation.

140 120

1.20

1.00

0.80

0.60

0.40

0.20

0.00

TP loading /t

TN loading /t

Temporal variation on NPS loading of two simulations

> Inter-monthly variation

Soil water monitoring

www.themegallery.com

Soil water

Main crops parameters for the crop growth module of SWAP

Parameter	Maize
Temperature sum from emergence to anthesis, TSUMEA (°C)	697
Temperature sum from anthesis to maturity, TSUMAM (°C)	1821
Light extinction coefficient, KDIR	0.75
No water extraction at higher pressure heads, HLIM1(cm)	-15
h below which optimum water extr. starts for top layer, HLIM2U (cm)	-30
h below which optimum water extr. starts for sub layer, HLIM2L (cm)	-30
h below which water uptake red. starts at high Tpot, HLIM3H (cm)	-325
h below which water uptake red. starts at low Tpot, HLIM3L (cm)	-600
No water extraction at lower pressure heads, HLIM4 (cm)	-8000
Minimum canopy resistance, RSC (s m ⁻¹)	70

Synergistic impacts of land-use change and soil property variation on non-point source nitrogen pollution in a freeze-thaw area

- Spatial distribution of average annual NPS total nitrogen load for four sequential landuse changes

Ouyang W. et al., Journal of Hydrology, 2013

• Averages and standard error bars of yearly simulated of NPS organic N and nitrate N in each simulation

Monthly air, soil temperature, and NPS nitrogen load with unvaried land use and varied soil properties

Spatial interaction of soil property with NPS pollution at watershed scale: the phosphorus indicator

Spatial distributions of eight soil properties indexes

top 20 cm surface

Spatial distribution of mean yearly NPS phosphorus loading

Spatial interactions of NPS sediment P (Sed-P) and organic P (Org-P) with soil parameters of 20-40 cm depth at subbasins with four kinds of landuses

www.themegallery.com

Contribution of soil indexes to NPS phosphorus loading assessment from the subbasins of upland and paddy rice

Conclusions

- By comparing two simulations based on calibrated parameter values and based on calculated ones respectively, it was identified that there was some difference on the NPS loading between them.
- The comparison also indicated the validated parameters value from similar watershed was a reliable solution for the area without regular monitoring data.
- With the field monitoring, SWAT had diverse applications on watershed management.

Thank You !

