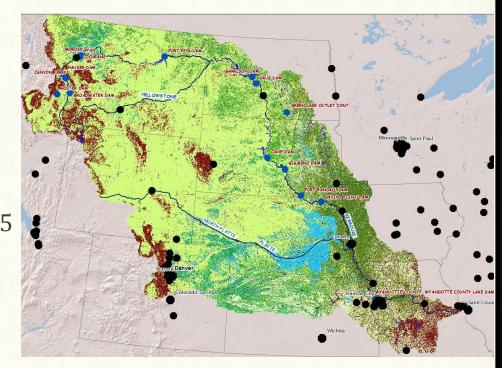
Assessing Water and Crop yields in Missouri River Basin using SWAT

Prasad Daggupati R. Srinivasan Vikram Mehta Dhanesh Yeganantham


SWAT International Conference: July15-19, 2013

Introduction

- Ø Missouri River Basin (MRB)
 - 500,000 square miles (~1,280,000 square km)
 - Part of 10 States
 - Ø Basin contains
 - O Sparsely-populated areas
 - Ø Metropolitan cities
 - Kansas city, Saint Louis, Omaha, Denver
 - Cropland -117 million acres (~47.35 million ha) with 12 million acres (~4.86 million ha) irrigated
 - Very important for US food production
 - 46% of wheat
 - 22% of its grain corn
 - o and 34% of its cattle

90% of cropland dependent on Precipitation and 10% on Irrigation

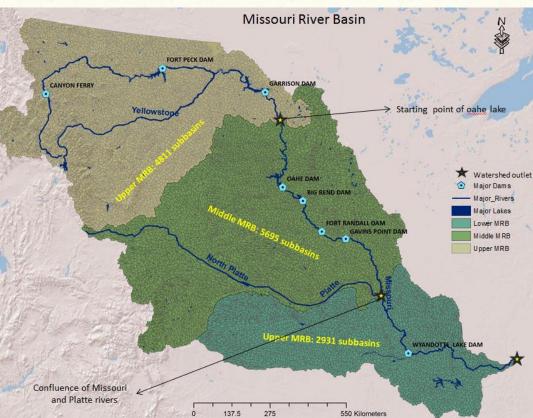
- Inhabitants of the Basin depend on the River system for
 - Orinking water, irrigation and industrial needs, hydro-electricity, recreation, navigation, and fish and wildlife habitat

O Climate change and Landuse change will have dramatic impact on Crop and Water yield in MRB

A watershed model needs to developed and calibrated

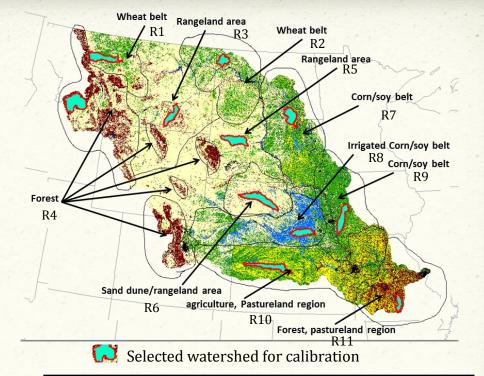
- answer various questions related climate change and landuse change impacts
- O Developing a watershed model for MRB is challenging
 O Very big basin with spatially varying hydrology and landuse
 O Therefore, Goal is to simulate MRB using SWAT at finer resolution
 - Objective

Overlop and implement a strategy to calibrate and validate SWAT model at finer resolution (HUC 12 level) for Crop and Water yields


Methods

Simulating whole MRB at finer resolution is complex and time consuming

- Over 13,000 subbasins (Huc12's)
- O Therefore, Divided MRB into 3 basins


O Upper MRB:
4811 subbasins
Middle MRB:
5695 subbasins
Cower MRB:
2931 subbasins

- Despite splitting into 3 basins
 - There are spatially different landuse and hydrologic regions

Calibration Strategy

- we decided to spatially disaggregate MRB into 11regions (R1 to R11)
 - O Expert opinion
 - Using landuse, soil, slope and precipitation
- Select a watershed (Huc 8 level) in each region
 - Representing region
 - Without reservoirs
- O Calibrate the watershed for crop and water yields
- Transfer parameters to entire region within each Basin (UP, MI,LW basins)

Region	UP MRB subbasins	MI MRB subbasins	LW MRB subbasins	
R1	435			
R2	904			
R3	2058			
R4	1338	577		
R5		1916		
R6		553		
R7	76	944		
R8		998	539	
R9		707	429	
R10			1516	
R11			447	

Data inputs and SWAT model setup

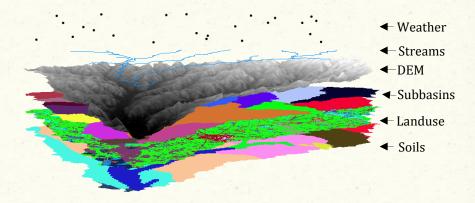
ArcSWAT 2012 interface used

- Rev 591 (latest)
- Watershed characterization
 - Predefined Subwatersheds and streams used for UP, MI and LW basin
 - O 30m DEM, 12 digit HUCs, NHD streams
 - Automatic delineation used for delineating watersheds in each selected region
 - 0 30m DEM
 - Subbasin size in watersheds same as HUC12 size

O Landuse landcover

- Ø 30m Landuse land cover
- with crop rotations and irrigation
 - 2010 and 2011 CDLs and MODIS irrigated land dataset

O Soils


O STATSGO soils at 1: 250,000 scale

• Weather

- O Downscaled historical daily precipitation and temperature data from 1949 to 2010
 - Each located at 462 x 222 grid (0.125x0.125) spacing covering entire watershed

O Reservoirs

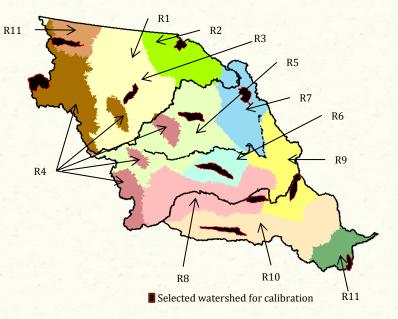
- O Lower: 37; Middle: 38; Upper: 32
- Reservoir data from NID
 - Size, Area, volume, etc.
- Reservoir management
 - I Largest 10 reservoirs in each basin modeled using simulated daily outflow
 - Remaining reservoirs using simulated target release
 - Expert opinion
- Ø Baseline setup finished for 11 watersheds in each region and 3 basin

Reservoirs

Land Management practices

Por each watershed in selected region

O Crops


- o planting, management practices and harvesting
 - Major emphasis given for corn, soybean, spring and winter wheat
 - Region specific heat units using heat units program
 - Auto fertilization
 - Auto irrigation in R8 (irrigation region)
 - Crop rotations also included

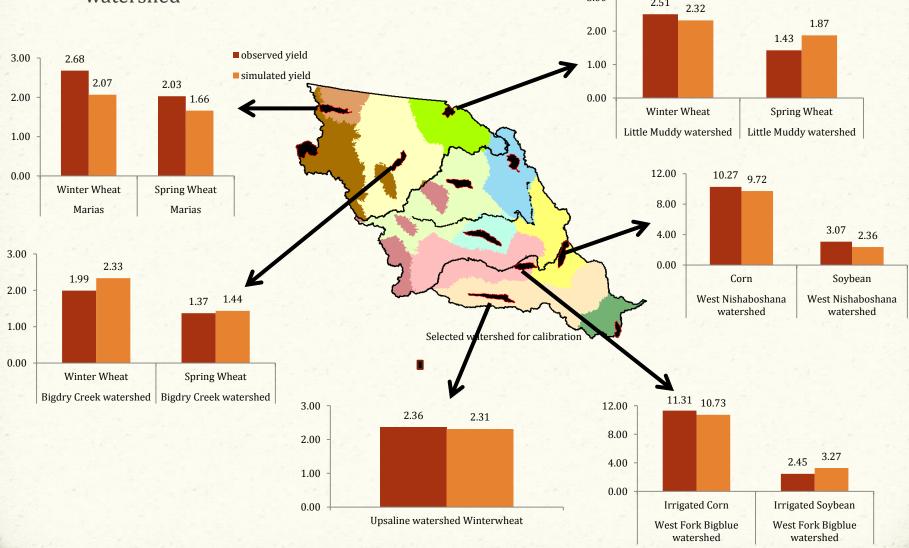
Rangeland

plant variety as grown in that region Eg. Bigblue in R11 and R10

O Forests

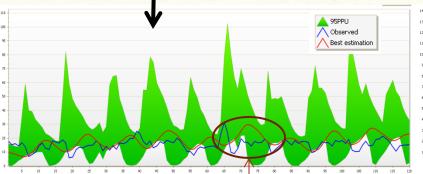
- Evergreen forests in R4
- O Deciduous forests in R11

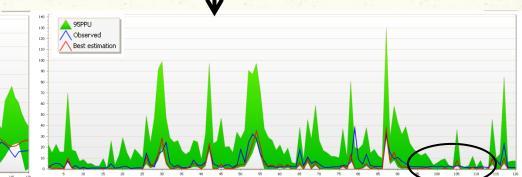
Calibration and validation


Crop yields were calibrated first for each watershed

- Manual calibration using iterative process
 - Fertilization rates (AUTO_NYR)
 - O Nitrogen Stress factor (AUTO_NSTRS)
 - Application Efficiency (AUTO_EFF)
 - AUTO_WSTRS and IRR_EFF for irrigated crops
- Average of 2005 to 2010 simulated yields were compared with NASS generated county average in each watershed
 - Crops compared are
 - Irrigated and Non Irrigated corn and soybean
 - Winter wheat and Spring wheat
- Ø Water yields were calibrated after crop yields
 - Manual calibration of parameters to capture overall hydrology in watershed
 - SWATCUP used to automate further calibration
 - O SUFI2 Algorithm
 - Ø Monthly simulated and observed flow compared using statistics
 - NSE, PBIAS, r and p factor (uncertainty)
- After satisfactory calibration,
 - crop management and hydrology parameters are transferred watershed to respective entire region
 - Semi automated SQL scripting
- Validation
 - Water yields was validated at different locations within each basin
 - O Crop yields was validated at HUC4 level within each basin

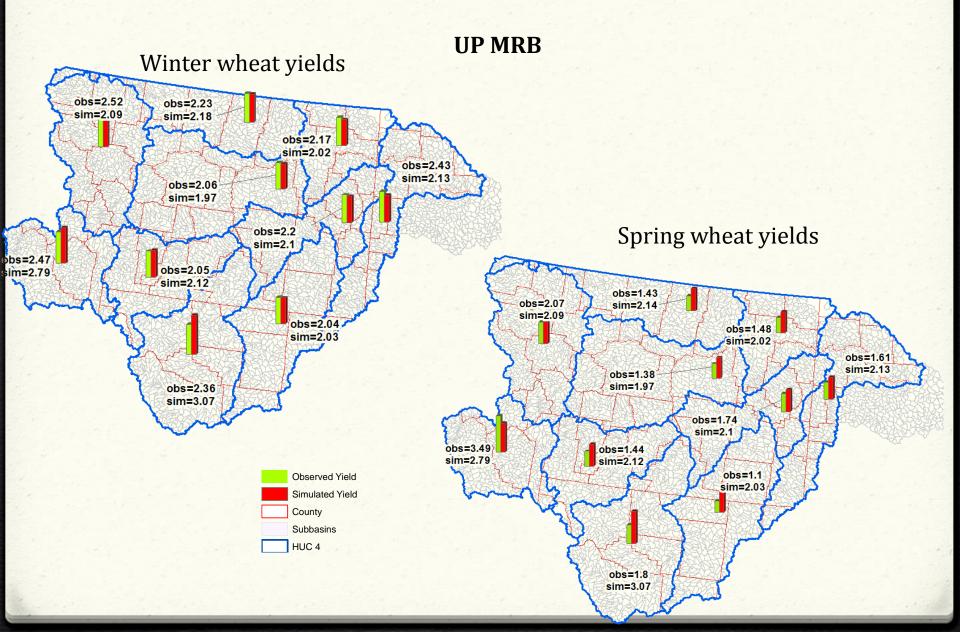
Results


O Crop yields calibration for selected watersheds


2005 to 2010 simulated average yield vs. NASS county average yield (observed) in each watershed
 3.00 2.51 2.22

• Water yield calibration for each watershed representing a region

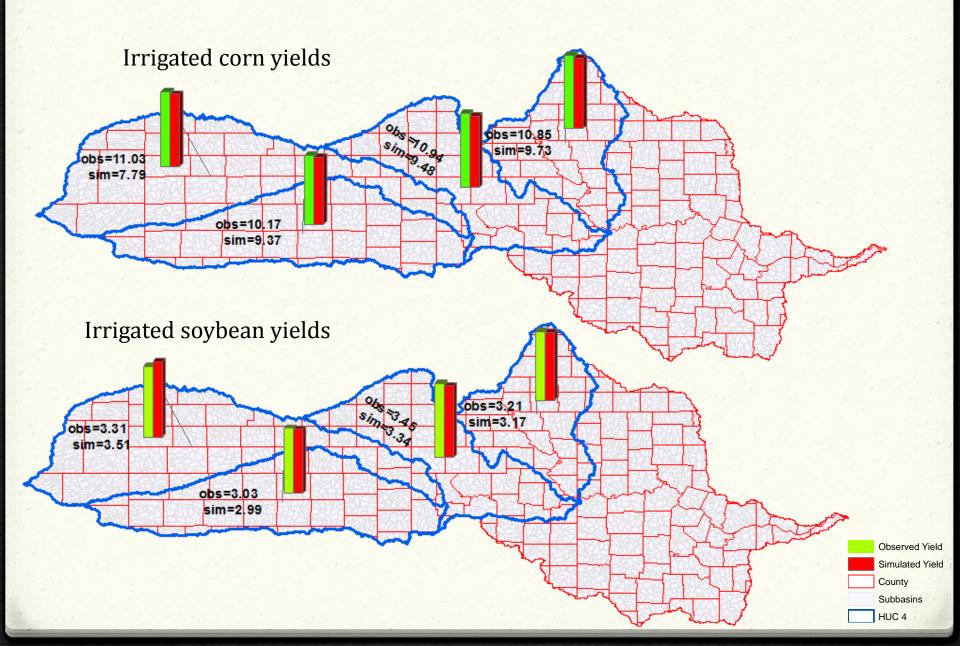
Basin	Region	Watershed	Time period	R-Square	NSE	P-factor	r-factor
R4 UP MRB R2	R4	Bighole	1990 - 1999	0.74	0.70	0.77	0.88
	R3	Bigdry	1990-1999	0.60	0.57	0.91	1.99
	NO		summer months	0.96	0.86	-	-
	R2	Little muddy	2002-2006	0.71	0.60	0.95	1.01
	R1	Marias	1990 - 1999	0.79	0.77	0.85	1.08
R5 MI MRB R7	R5	Cherry	1990-1999	0.73	0.70	0.32	0.70
	R7	James	2002-2010	0.76	0.60	0.86	0.73
		[•] Up northloop	1990-1999	0.09	-1.34	0.74	8.83
	R9	West Nishaboshana	1990-1999	0.84	0.79	0.63	0.88
	R8	Westfork big blue	1980-1989	0.54	0.40	0.64	1.02
	R10	Up saline	1990-1999	0.89	0.87	0.89	0.68
	R11	Big penny	2000-2005	0.80	0.68	0.72	0.82



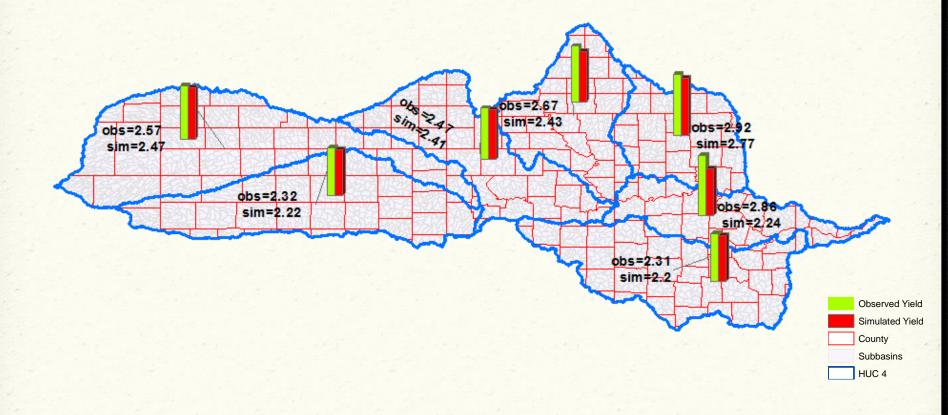
Simulated (red) peaks with precipitation events Observed (blue) doesn't peak

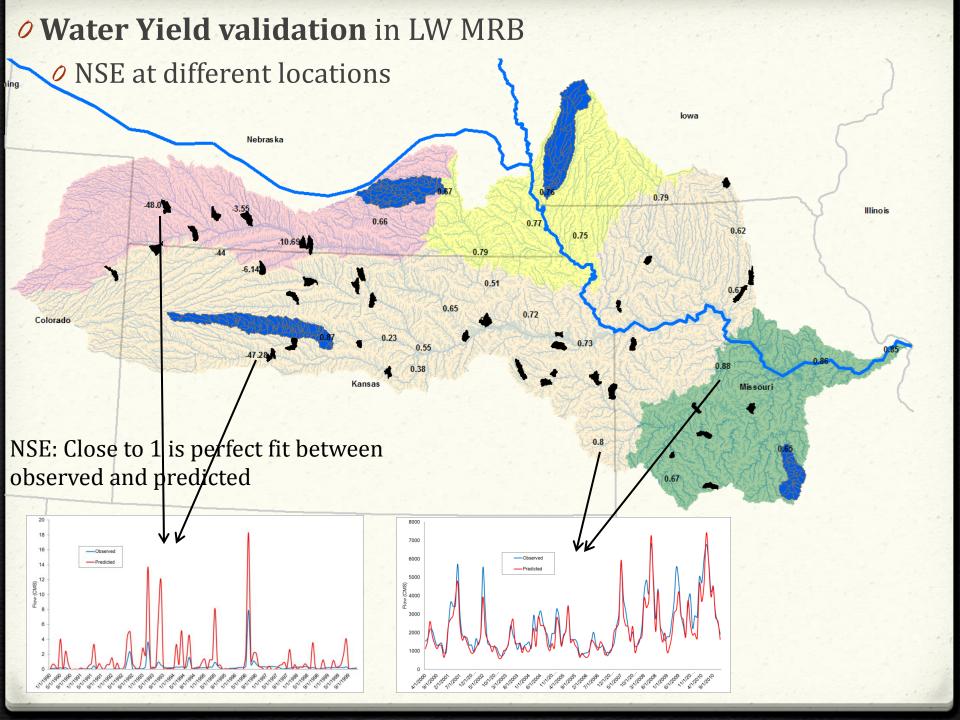
Recharge from Ogallala aquifer

Ocrop yield validation in UP and LW MRB at HUC 4 level


2005 to 2010 simulated average yield vs. NASS county average yield (observed) for each HUC 4

LW MRB




LW MRB

LW MRB

Continuous winter wheat yields

Future work

Validate crop yields at HUC 4 level in MI MRBValidate water yields at different locations in UP and MI MRB

Conclusions

Ø Methodology devised to calibrate Missouri River Basin (large scale watersheds)

- O Divide watershed into hydrologic regions
- Select and calibrate a watershed in a region
 - extrapolate parameters to the region
- Crop yield calibration
 - O Good for selected watersheds
 - Preasonable at HUC4 level when parameters were extrapolated
 - Ocrn and Spring wheat yields needs still some improvements

• Water yield calibration

- Good for selected watersheds except for 2 watersheds due to Ogallala aquifer recharge issues
- Reasonable during validation at different locations
 Water abstractions and other man made changes were not captured

Thank You